Classifying T Cell Activity with Convolutional Neural Networks
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e Binary classification: activated and quiescent
e Various machine learning models of increasing complexity
e Understand when and why deep learning is needed

e T cell activity state is important for immunotherapy
e Autofluorescence imaging is label-free and non-destructive
e Use machine learning to classify activated and quiescent T cells
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with only autofluorescence intensity images
e Results of five classifiers show that advanced models can
accurately classifty T cell activity
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e Regularized logistic regression model fitted with image pixel matrix L1 penalty power A
atrix
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Accuracy 98.59%

Logistic Regression with Regularized logistic regression model fitted with two numerical values:
L1 penalty power A
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AP 99.67%
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Pre-train Inception v3 on generic images Donor 1: Feature Visualization with Dimension Reduction
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Takeaways and Reproducibility
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Advanced models can accurately classify T cell activity state

Transfer learning outperforms other models

Performance boost of retraining more layers is not significant

Release code as Jupyter notebooks: reproducibility and tutorial
ithub.com/qitter-lab/t-cell-classification)
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