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SUMMARY

While artificial intelligence (AI) systems have been increasingly integrated into our
everyday lives, how they make predictions often remains obscure to both their developers
and the people they impact. The opacity of AI models contributes to their perception as
“mysterious”—rendering both developers and those impacted by these models powerless
when it comes to aligning AI models with their values.

My dissertation aims to address these challenges with a human-centered approach, by
designing and developing novel techniques and easy-to-adopt interactive tools that explain
and guide AI models. Specifically, this thesis focuses on three complementary thrusts:

1. Explain AI to Everyone. We pioneer easy-to-access interactive visualization systems
that help AI novices and experts understand AI models (e.g., WIZMAP and CNN EX-
PLAINER used by 360k+ novices worldwide). We also present first-of-its-kind resources
(e.g., 6.5TB DIFFUSIONDB with 14 million prompt-image pairs) to help AI developers
and policymakers understand the impacts of large generative AI models.

2. Guide AI with Human Values. To harness the potential of AI, gaining a better under-
standing of it is not enough. We empower AI developers to vet and fix problematic model
behaviors (e.g., GAM CHANGER deployed by Microsoft) and those impacted by AI to
receive customizable suggestions to alter unfavorable AI decisions (e.g., GAM COACH).

3. Democratize Human-Centered AI. Human-centered AI practices are maximally valu-
able when they find practical adoption. To lower the barrier to applying these practices,
we introduce in situ tools (e.g., FARSIGHT) to foster responsible AI awareness among
practitioners during the prototyping stage within their current workflows.

Our work is making significant impacts on academia, industry, and society: CNN
EXPLAINER has helped 360k+ novices learn about CNNs worldwide, and it has been
integrated into deep learning courses (Carnegie Mellon, Georgia Tech, Duke University,
University of Tokyo and more). It has also been highlighted as a top visualization publication
(top 1%) invited to SIGGRAPH. FARSIGHT has received a CHI Best Paper Honorable
Mention award. DIFFUSIONDB has received an ACL Best Paper Honorable Mention award.
GAM CHANGER has received the Best Paper Award at NeurIPS Workshop on Bridging the
Gap: From ML Research to Clinical Practice, and the tool is now deployed by Microsoft
and integrated into their inheritability library. Our work has been recognized by an Apple
Scholars in AI/ML PhD fellowship and a J.P. Morgan AI PhD Fellowship.

xxiii



CHAPTER 1
INTRODUCTION

As AI models have grown increasingly complex, how they make predictions is often
unknown to both their developers and the people they impact. The “black-box” nature of AI
models presents challenges for developers in understanding their behaviors and impacts,
making it difficult to anticipate and prevent harms that may arise from deploying these
models until it is too late. Examples include representing gender bias in the AI-powered
hiring process [1], discriminating racial minorities in recidivism predictions [2], and being
vulnerable to human-imperceptible adversarial attacks[3].

Also, the opacity of AI models contributes to their perception as “mysterious” and “un-
predictable” [4]—rendering both developers and those impacted by these models powerless
when it comes to exercising human agency for guiding AI models or seeking remedies for
unfavorable AI predictions. For instance, in the algorithmic hiring example, due to a lack of
understanding of job screening models and techniques to fix problematic model behaviors,
developers struggle to mitigate model biases [5]. Similarly, due to the opacity surrounding
these models and a lack of familiarity with AI, job applicants find themselves with limited
recourse options when their applications are rejected by AI models [6].

To develop and deploy trustworthy AI systems that benefit everyone, there is an urgent
need to have the capability to thoroughly vet and rectify AI models. First, we need to
explain what AI models have learned and how they make predictions. After gaining an
understanding of these models and their potential impacts, it is essential to ensure that they
have acquired the correct knowledge and that their behaviors align with human values. As
these solutions to AI explainability and human agency emerge, ensuring their accessibility
and ease of adoption by AI developers is of paramount importance. After all, responsible
AI techniques are maximally valuable when AI developers actively embrace them.

This thesis (Fig. 1.1) aims to address these critical challenges by developing new

Figure 1.1: In this thesis, we democratize human-centered AI by innovating techniques and tools
that explain AI to humans and empower humans to guide AI with their values.
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Figure 1.2: My thesis includes three complementary parts. Each part addresses one research question
with research answers and example works mapped to seven chapters of the thesis.

paradigms, techniques, and interactive tools that empower people with diverse ML back-
grounds to gain an understanding of AI models, enable AI developers and those impacted
by AI systems to guide AI, and democratize human-centered AI by making it accessible
and readily adoptable in AI researchers and practitioners’ workflows.

1.1 Thesis Overview

To foster understanding, agency, and adoption in human-centered AI, this thesis studies how
to explain AI technologies to people with different AI backgrounds and needs (Part I ),
how to enable human agency in AI (Part II ), and how to make human-centered AI
accessible to all (Part III ). This thesis addresses three complementary research ques-
tions (Fig. 1.2) with answers and example works in seven chapters.

1.1.1 Part I: Explain AI to Everyone

There has been an increasing body of research that aims to help AI experts interpret AI model
weights. However, AI now impacts everyone—it is crucial that everyone knows how AI
works and how to use it. Moreover, good AI models require high-quality training data. To
avoid the classic “garbage in, garbage out” problem, AI practitioners have a pressing need to
make sense of the relationship between data and models. Yet understanding the model and
data is not enough, to develop and use AI in responsible ways, everyone must learn about
different potential use cases of AI technologies and their societal impacts.

In the first part of the thesis, we develop interactive visualization tools that explain
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Figure 1.3: CNN EXPLAINER is an interactive visualization tool that empowers AI novices to easily
learn how a convolutional neural network (CNN) transforms an input image into a category prediction.
Leveraging smooth transitions and animations, the tool integrates multiple views with different levels
of abstraction that explain both high-level model structures and low-level mathematical operations.

complex AI models to people without technical expertise (CNN EXPLAINER, Chapter 3)
and elucidate large AI datasets (WIZMAP, Chapter 4). To help people learn about the
impacts of AI, we introduce a first-of-its-kind dataset documenting how real users engage
with generative AI models (DIFFUSIONDB, Chapter 5).

CNN EXPLAINER: Explaining Convolutional Neural Networks to AI Novices

Through a human-centered iterative design process, we design and develop CNN EX-
PLAINER (Fig. 1.3), an interactive visualization tool that helps AI novices learn about the
inner workings of convolutional neural networks (CNNs). CNN EXPLAINER addresses key
learning challenges that we identified through interviews with instructors and a survey with
past students. Our tool tightly integrates a model overview (Fig. 1.3A) summarizing a CNN’s
high-level structures, and on-demand, dynamic visual explanation views (Fig. 1.3-BC) that
elucidate the low-level transformation mechanisms. Leveraging animation and smooth
transitions across levels of abstraction, CNN EXPLAINER enables users to connect CNN’s
high-level structures to its low-level mathematical operations. An observation user study
highlights that our tool helps non-experts learn about the inner mechanisms. CNN EX-
PLAINER has transformed AI education: its open-source demo has been integrated into deep
learning courses (Carnegie Mellon, Georgia Tech, Duke University, University of Tokyo,
UC Santa Barbara, Texas A&M and more), helping 340k+ novices from 200+ countries
learn about seemingly complex ML concepts, and it has received 6.9k+ stars on GitHub.
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Figure 1.4: An overview of the interface of WIZMAP, a scalable visual analytics tool that enables AI
practitioners and researchers to easily explore and interpret millions of embedding vectors across
different levels of granularity. To help users quickly make sense of the embedding space, WIZMAP

automatically generates multi-resolution embedding summaries across different neighborhoods.

WIZMAP: Interpreting and Exploring Large AI Embeddings

AI non-experts face challenges in learning complex AI models, and AI experts also struggle
to make sense of their trained models. To help AI practitioners interpret AI models and
training data, we developed WIZMAP (Fig. 1.4), a scalable visual analytics tool that em-
powers users to easily explore large embeddings of AI models. An embedding is a latent
representation of what an AI model has learned from its training data—especially valuable
for interpreting the model, building new models, and analyzing datasets. We introduce a
novel multi-resolution embedding summarization method that guides users to dynamically
decipher different neighborhoods in the embedding space. WIZMAP leverages modern web
technologies such as WebGL and Web Workers to scale to millions of embedding points
directly in users’ web browsers without the need for dedicated backend servers.

DIFFUSIONDB: Understanding How Real Users Use Generative AI Models

Besides the challenges of understanding AI faced by both AI novices and experts during
development, practitioners and researchers also encounter difficulties in anticipating how
real users would use a deployed AI model. Given the rapidly growing prevalence of AI in
every aspect of our daily lives, it has never been more critical to understand how a model is
used—the understanding is essential for practitioners and policymakers to assess its societal
impact and mitigate potential harms.
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Figure 1.5: An example image in DIFFUSIONDB generated by a real user.

To help address this challenge, we introduce DIFFUSIONDB, the first large-scale dataset
logging real user interactions with Stable Diffusion, a popular text-to-image generation
model. DIFFUSIONDB totals 6.5TB, containing 14 million images generated by real users,
accompanied by 1.8 million unique text prompts and rich metadata. Our dataset enables
exciting research opportunities in prompt engineering, regulation, AI interpretability, and
deepfake detection.

1.1.2 Part II: Guide AI with Human Values

Gaining a better understanding of AI (Part I) is not enough. To harness AI’s potential
for enhancing people’s lives and preventing potential harms, it is crucial to translate our
understanding of AI into actions that align AI models’ behaviors with human knowledge
and values. To do that, we introduce novel interaction techniques (e.g., GAM CHANGER)
that empower AI practitioners to vet and fix problematic model behaviors through model
editing (Chapter 6). Moreover, we present new algorithms and tools (e.g., GAM COACH)
that provide individuals impacted by AI with personalized and customizable suggestions
that can alter unfavorable AI decisions (Chapter 7).

GAM CHANGER: Editing AI Models to Reflect Human Knowledge and Values

Through a collaboration between AI and human-computer interaction researchers, physi-
cians, and data scientists across Georgia Tech, Microsoft Research, and NYU Langone
Hospital, we design and develop GAM CHANGER (Fig. 1.6), the first interactive tool that
enables AI practitioners and domain experts to easily and responsibly edit Generalized
Additive Models (GAMs) and fix undesired behaviors. GAMs are a widely-used model class
known for their predictive performance, which rivals that of complex black-box models,
while remaining simple enough for humans to understand their decision-making process.
With GAM CHANGER’s user-friendly interactive interfaces, even users without any pro-
gramming backgrounds can easily modify the model weights of their trained GAMs. To
guard against potentially harmful edits, GAM CHANGER offers users continuous feedback
about feature correlations and the impacts of their edits on different subgroups. Furthermore,
our tool allows users to document and undo any edits. GAM CHANGER has been deployed
at Microsoft and integrated into their open-source library InterpretML [7].
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Figure 1.6: GAM CHANGER empowers AI practitioners and domain experts to easily and responsibly
align AI model’s behaviors with their knowledge and values, via direct manipulation of the weights
of Generalized Additive Models (GAMs). In addition to offering (A) easy-to-use editing interfaces,
our tool actively promotes responsible editing by providing users with continuous feedback regarding
(B1) the impacts of their edits, (B2) feature correlations, and (B3) a comprehensive edit history.

GAM COACH: Alternating Unfavorable AI Decisions with Interactive Recourse

Helping AI developers align their models with human values is a significant step, but it
is not enough. Even a perfectly aligned AI model can make predictions unfavorable to
certain individuals. For example, a model can rightfully deny a loan application due to the
applicant’s lack of a credit history. The challenge lies in empowering individuals impacted
by such unfavorable predictions to influence and potentially change the models’ decisions.

To address this challenge, we develop GAM COACH (Fig. 1.7), the first interactive
tool enabling people impacted by AI-based decision-making systems to iteratively generate
algorithmic recourse plans that respect their preferences. A recourse plan consists of
minimal changes in a few features that would have led to the desired decision outcome,
such as increasing the FICO score by 10 points to get loan approval. With GAM COACH’s
novel adaptation of integer linear programming and simple interfaces, users can iteratively
customize recourse plans. A quantitative user study with 41 participants highlights our tool
is usable and useful, and users prefer personalized recourse plans over generic plans.

1.1.3 Part III: Democratize Human-Centered AI

So far we have developed novel techniques and tools that explain AI to a wide range
of stakeholders (Part I) and empower individuals to exert human agency and guide AI
systems (Part II). Nonetheless, these endeavors are maximally useful only if they are adopted
in practice. Furthermore, within the context of an ever-expanding body of research on human-

6



Figure 1.7: GAM COACH is the first interactive tool enabling people impacted by AI-based decision-
making systems to iteratively generate algorithmic recourse plans that reflect their preferences. In this
example, after a user specifies the difficulties and acceptable ranges of changing different features,
the tool suggests increasing the FICO score and decreasing credit utilization to get loan approval.

centered and responsible AI, a critical question arises: How can we democratize access
to human-centered AI techniques and promote its broad adoption? Our work addresses
this challenge by integrating human-centered AI practices into AI practitioners’ existing
workflows, such as popular prompting interfaces (FARSIGHT, Chapter 8).

FARSIGHT: Fostering Responsible AI Awareness during AI Prototyping

Modern large language models excel in various NLP tasks ranging from classification to
translation. With a growing number of accessible LLMs and prompting tools such as GPT
Playground and MakerSuite, we see an expanding group of “AI prototypers”. For example,
many designers, writers, lawyers, and everyday users start to prototype their AI programs
by writing prompts. Many of these prototypers do not have training in AI or computer
science, and they face challenges in anticipating potential societal harms that might arise
from their AI programs. To foster the awareness of responsible AI among AI prototypers,
we introduce FARSIGHT (Fig. 1.8), an in situ tool that helps users envision potential use
cases, stakeholders, and harms based on the prompts they are writing (Chapter 8). To lower
the barrier to learning and adopting human-centered AI practices, we design FARSIGHT

to integrate into practitioners’ workflows. For example, when the practitioner is crafting
prompts in Google AI Studio or computational notebooks, FARSIGHT highlights related AI
incident reports and AI-generated potential use cases, stakeholders, and harms.
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Figure 1.8: FARSIGHT is a collection of in situ interfaces and novel techniques that empower AI
prototypers to envision potential harms that may arise from their large language model-powered AI
applications during early prototyping. In this example, an AI prototyper is crafting prompts for an
English-to-French translator, and FARSIGHT alerts the user with potential harms by highlighting
news articles relevant to the user’s prompt and LLM-generated potential user cases and harms.

1.2 Thesis Statement

Human-centered solutions to empower novices, practitioners, and domain experts to interact
with AI systems with ease, trust, and joy, through the design and development of interactive
tools that aim to:

1. Explain AI with interactive and scalable visualizations,

2. Guide AI with human knowledge and values, and

3. Democratize human-centered AI practices within people’s workflows.

1.3 Research Contributions

My thesis makes research contributions across several major fronts, including human-
computer interaction, machine learning, interactive visualization, and, importantly, their
intersection to explain AI (Part I), guide AI (Part II), and democratize human-centered AI
practices (Part III).

Transformative visual AI explanation: worldwide deployment and scalable insight

• The viral success of CNN EXPLAINER exemplifies the effectiveness of our proposed
dynamic explanation in explaining complex AI models across various levels of ab-
straction (Chapter 3). Widely used by over 360,000 novices from more than 200
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countries, CNN EXPLAINER has been integrated into deep learning courses across
top universities including Carnegie Mellon, Georgia Tech, Duke University, and the
University of Tokyo.

• Used by data scientists and researchers at Apple and Google Deepmind, WIZMAP is the
first system that smoothly visualizes and summarize over 1,000,000 embedding points
with novel algorithm-enabled dynamic annotations entirely in browsers (Chapter 4).

• We pioneer on-device computing techniques to accelerate scalable interactive visu-
alization for complex AI models and large datasets. For example, CNN EXPLAINER

explains a live convolutional neural network entirely in the user’s browser, with-
out the need for installation or dedicated servers—broadening the public’s access to
cutting-edge AI technologies (Chapter 3).

First-of-its-kind algorithms that enable actionable AI explainability

• Integrated into Microsoft’s interpretability library, GAM CHANGER empowers mil-
lions of developers to use simple clicks and drags to align the model behaviors with
their knowledge and values. GAM CHANGER puts AI explanations into action by
introducing the first model-editing tool that enables practitioners and domain experts
to easily modify the weights in AI models (Chapter 6). It has been recognized with the
Best Paper award at the NeurIPS workshop on ML for clinical practice.

• GAM COACH is the first interactive algorithmic recourse tool that empowers end
users to specify their recourse preferences and iteratively fine-tune actionable recourse
plans that can alter unfavorable AI decisions, enabled by a novel algorithm that adapts
integer linear programming (Chapter 7).

Transformative paradigms to leapfrog responsible AI adoption

• Developed in collaboration with Google Deepmind researchers, FARSIGHT introduces
a new paradigm for designing and developing easy-to-adopt tools that can be directly
integrated into AI practitioners’ existing workflows. FARSIGHT helps practitioners
envision the potential harms of their AI product when they write prompts within their
favorite prompting interfaces (Chapter 8). This new paradigm has been recognized
with the Best Paper, Honorable Mention award at CHI’24.

• Our research is easily accessible to AI researchers, practitioners, and the general public.
For example, our tools can be used directly in computational notebooks (Chapter 4,
Chapter 6), the most popular AI development environment. Additionally, by providing
publicly accessible web-based deployments of CNN EXPLAINER, WIZMAP, GAM
CHANGER, GAM COACH, and FARSIGHT that require no installation, we lower the
barrier to learning and applying cutting-edge human-centered AI techniques.
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Deployed and open-source systems and resources that accelerate AI innovation

• DIFFUSIONDB introduces the first large-scale open-access prompt dataset for text-
to-image generative models with 14,000,000 image-prompt pairs, totaling 6.5 TB in
size. With over 2,000,000 total data requests through the APIs to date, DIFFUSIONDB
is instrumental in enabling researchers to study the real-world usage and impacts of
generative AI models (Chapter 5). The impact of this dataset is recognized with the
Best Paper, Honorable Mention award at ACL’23.

• This PhD thesis has introduced a suite of 6 paradigm-shifting open-source tools that
empower and inspire researchers and practitioners to adopt our design and implementa-
tions in their human-centered AI research. Collectively, they have received over 10,000
stars on GitHub, the most popular platform for collaborative software development,
demonstrating their significant impact and widespread adoption within the community.

1.4 Impact

My research is already making a significant impact on society and industry.

• CNN EXPLAINER has transformed AI education: its public demo has been integrated
into deep learning courses (Carnegie Mellon, Georgia Tech, Duke University, University
of Tokyo and more), helping 360,000 novices from 200+ countries learn about seemingly
complex ML concepts, and it has received 7,000 stars on GitHub.

• DIFFUSIONDB has received over 2,000,000 data requests through the HuggingFace APIs.
It is also among the top 20 most-liked datasets on HuggingFace out of 70,000 datasets.
It has been integrated into official AI tutorials from Amazon AWS and Google Cloud.

• GAM CHANGER is deployed in Microsoft and integrated into their open-source library
InterpretML. The tool is used by physicians in NYU hospitals on real-life hospital
admission prediction models.

• WIZMAP is used in Apple and Google to explore large text datasets.

• My works have been recognized by three best-paper-type awards across top-tier HCI,
NLP, and AI venues: FARSIGHT received the Best Paper Honorable Mention Award
at CHI’24; DIFFUSIONDB received the Best Paper Honorable Mention Award at
ACL’23; GAM CHANGER received the Best Paper Award at the NeurIPS Workshop
on Bridging the Gap: From ML Research to Clinical Practice. CNN EXPLAINER was
highlighted as a top visualization publication (top 1%) invited to present in SIGGRAPH.

• My research on democratizing human-centered AI has been invested in and recognized by
an Apple Scholars in AI/ML PhD fellowship and a J.P. Morgan AI PhD Fellowship.
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CHAPTER 2
BACKGROUND AND RELATED WORK

This chapter briefly reviews related work. I focus on three related topics from which my
thesis will contribute to: (1) explaining AI technologies; (2) exercising human agency in AI;
and (3) democratizing human-centered AI.

2.1 Explainable AI

2.1.1 Explaining AI to Experts

With the growing complexity of AI models, there is a rapidly increasing body of research on
AI explainability, where researchers aim to understand how AI models make predictions.
There are two overall directions in explainability research: developing intelligible AI models
and designing post-hoc explanation techniques [8].

Intelligible Models. First, researchers have made strides in developing models that are
not only simple enough for humans to understand but also maintain high accuracy. These
“glass-box” models include rule sets [9], sparse decision trees [10], and generalized additive
models (GAMs) [11]. In particular, GAMs have emerged as a popular model class among
the data science community due to their simplicity and high performance. Given an input
x ∈ RM with M features and a target y ∈ R, a GAM with a link function g and shape
function fj for each feature j ∈ {1, 2, . . . ,M} can be written as:

g (y) = β0 + f1 (x1) + f2 (x2) + · · ·+ fM (xM) (2.1)

The link function is determined by the task. For example, in binary classification, g is
logit. In Equation 2.1, β0 represents the intercept constant. There are many options for the
shape functions fj , such as splines [12] and gradient-boosted trees [11]. Some GAMs also
support pair-wise interaction terms fij(xi, xj). Different GAM variants come with different
training methods, but once trained, they all have the same form.

Post-hoc Explanations. Besides intelligible models, researchers have also proposed
post-hoc techniques that can explain complex AI models. For example, LIME [13] leverages
local linear approximation to compute feature importance in a model. SHAP [14] applies a
game theory framework to attribute a model’s prediction to all input features. In addition to
feature-based explanations, researchers also directly study what an AI model has learned
from the training data. For example, researchers interpret models by visualizing and
analyzing their embeddings—latent representations of input data [15]. Some researchers
also try to understand the trained weights in models by studying their activation patterns [16].
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2.1.2 Explaining AI to Non-experts

Education and gaining user trust are two main goals for explaining AI models to non-experts.
To promote AI literacy, researchers introduce interactive tools to help AI novices learn about
different AI technologies. For example, TEACHABLE MACHINE [17] explains the training
process for an image classifier. TENSORFLOW PLAYGROUND [18] and GAN LAB [19]
use interactive visualizations to help beginners learn about the underlying mechanisms
of neural networks and generative adversarial networks, respectively. To promote trust,
researchers and practitioners propose situational and text-based explanations that help end
users understand how their data is being used and how recommendations are generated [20].

2.1.3 Explaining AI Models and Data with Embeddings

Researchers and domain experts are increasingly using expressive embedding representations
to interpret trained models [21], develop models for new domains [22] and modalities [23],
as well as analyze and synthesize new datasets [24]. People extract a data point’s embeddings
by collecting its corresponding layer activations in neural networks trained for tasks like
classification and generation [15]. Additionally, researchers have developed task-agnostic
models, such as word2vec [25], ELMo [26], and CLIP [27] that generate transferable
embeddings directly. These embeddings have been shown to outperform task-specific,
state-of-the-art models in downstream tasks [27, 28].

Dimensionality Reduction. Embeddings are often high-dimensional, such as 300-
dimensions for word2vec, or 768-dimensions for CLIP and BERT Base [29]. Therefore, to
make these embeddings easier to visualize, researchers often apply dimensionality reduction
techniques to project them into 2D or 3D space. Some popular dimensionality reduction
techniques include UMAP [30], t-SNE [31], and PCA [32]. Each of these techniques has
its own strengths and weaknesses in terms of how well it preserves the embeddings’ global
structure, its stochasticity, interpretability, and scalability. Despite these differences, all
dimensionality reduction techniques produce data in the same structure.

Interactive Embedding Visualization. Researchers have introduced interactive visual-
ization tools to help users explore embeddings [e.g., 33, 34, 35]. For example, Embedding
Projector [36] allows users to zoom, rotate, and pan 2D or 3D projected embeddings to
explore and inspect data point features. Similarly, Deepscatter [37] and regl-scatterplot [38]
empowers users to explore billion-scale 2D embeddings in their browsers. Latent Space
Cartography [39] helps users find and refine meaningful semantic dimensions within the
embedding space. In addition, researchers have designed visualizations to aid users in
comparing embeddings, such as embComp [40] visualizing local and global similarities
between two embeddings, Emblaze [41] tracing the changes in the position of data points
across two embeddings, and Embedding Comparator [42] highlighting the neighborhoods
around points that change the most across embeddings.
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2.1.4 Explaining AI Usage

With the increasing popularity of large generative models, researchers have proposed prompt
datasets and studied how people write prompts to generate text and images. For example,
Researchers have been studying prompt engineering for text-to-text generation [e.g., 43, 44,
45]. To facilitate this line of research, researchers develop PromptSource [46], a dataset
of 2k text prompts along with a framework to create and share prompts. There is also a
growing interest in text-to-image prompt engineering research from NLP, Computer Vision,
and HCI communities [e.g., 47, 48]. For example, Oppenlaender [49] identifies six types of
prompt modifiers through an ethnographic study, and Liu and Chilton [50] proposes design
guidelines for text-to-image prompt engineering by experimenting with 1,296 prompts.
Lexica [51] allows users to search over 5 million Stable Diffusion images with their prompts,
but it does not release its internal database.

2.2 Human Guidance in AI

More recently, researchers put AI explainability into action and help AI stakeholders exercise
their human agency, such as enabling AI practitioners to edit model weights and provide
recourse to people impacted by AI-powered decision systems.

2.2.1 Model Editing

Prior research has highlighted that being able to modify AI models can lead to greater trust
and better human-AI team performance [52]. To enable practitioners and domain experts
to guide AI model behaviors, researchers have proposed model editing techniques that
modify model behaviors by changing the learned weights. For example, practitioners can
modify important neurons in a neural network to change semantic concepts in generated
images [53], control text translation styles [54], and induce basic concepts in text gener-
ation [55]. More recently, researchers have also studied model editing in large language
models, such as editing model weights to update the model’s knowledge [56] and unlearn
certain knowledge [57], and amplifying stored facts [58].

2.2.2 Algorithmic Recourse

Algorithmic recourse aims to design techniques that provide people impacted by AI systems
with actionable feedback about how to alter AI predictions. Take AI-assisted loan appli-
cation approval as an example, to help a rejected applicant get approval, an algorithmic
recourse plan can be “increasing the annual income by $5k.” Popularized by Wachter et
al. [59], researchers typically generate recourse plans by creating counterfactual examples.
These counterfactual examples suggest minimal changes in a few features that would have
led to a different AI prediction outcome. There are many different methods to generate
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counterfactual examples, such as casting it as an optimization problem [60], searching
through similar samples [61], and using generative models [62].

2.3 Democratizing Human-centered AI

2.3.1 Existing Responsible AI Tools and Practices

Despite the recent advancements in human-centered AI and responsible AI, incorporating
these practices into AI product development remains a challenge, in part due to practition-
ers’ insufficient training [63] and organizational culture [64]. To address these challenges,
researchers have proposed several approaches to democratize human-centered AI, such as
integrating them into AI education [65], providing engaging playbooks or design activi-
ties [66], and cultivating ethical norms in AI research and development [67]. More recently,
researchers have also designed and developed easy-to-use interactive tools to operationalize
human-centered AI practices. These tools cover a wide range of dimensions in human-
centered AI, such as helping users assess and improve fairness in AI models [68], explaining
AI predictions [7], testing and error analysis [69], as well as documenting data and model
development [70]. These tools enable practitioners and domain experts with less experience
in human-centered AI to prioritize humans in AI development.

2.3.2 Anticipating Technology’s Negative Impacts

Various design methods and approaches have been developed to support ideation about
potential downstream impacts of technology, including anticipatory tech ethics [71, 72],
speculative design [73, 74, 75], and value-sensitive design [76, 77, 78] among others. To
support designers with this, prior research has developed design toolkits [e.g., 79] and
resources, such as Envisioning Cards [80], Value Cards [81], Timelines [82], and the Black
Mirror Writers’ Room [83], among others [e.g., 84, 85]. Such resources are intended to be
used by designers of technology early in the design process, but they may not fit neatly into
existing product design and development processes, particularly for AI-powered application
design paradigms, where large pre-trained models are used for many downstream tasks [86].

In addition to technology designers, computing researchers have called for the computer
science field to consider the negative impacts of their work in addition to the positive impacts
[87]. In AI research, conferences such as NeurIPS have begun requiring that researchers
articulate potential negative broader impacts of their work in statements at the ends of their
papers [88] to avoid the “failures of imagination” [89] that may lead to downstream harms.
Prior work analyzed these broader impacts statements, finding convergence around a set of
topics such as risks to privacy and bias, but often lacking concrete specifics or strategies
for mitigation [90, 91, 67, 92]. However, prior work suggests that many CS researchers
may not have the training, resources, or inclination to engage in this type of anticipatory
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work [93, 94], suggesting that new tools, training, and processes, are needed to support
researchers and developers in engaging in anticipatory work in ways that are integrated into
their research practices. More recently, researchers have proposed a framework that uses
LLMs to anticipate harms for classifiers by generating stakeholders and vignettes for a given
scenario [95], evaluating this framework through interviews with responsible AI researchers.

2.3.3 Identifying and Mitigating LLM Harms

More recently, there has been a growing body of research that specifically focuses on iden-
tifying and mitigating the harms of LLMs. Researchers have introduced harm taxonomies
specifically for LLMs, which identify known risks (i.e., informed by observed instances of
harm) [96, 97, 98] and emerging risks of LLMs (anticipated risks based on foreseeable ca-
pabilities of LLMs) [99, 100]. Since LLMs can be used for a wide range of tasks associated
with many different categories of harms, researchers have presented frameworks and evalua-
tion methods to assess a particular type of LLM harm, including misinformation [101, 102],
representation and toxicity [103, 104], human autonomy [105, 106], malicious use [107,
108], and data privacy [109, 110]. The popular methods to identify these harms include
benchmarking [111, 112], user research [113, 114], and adversarial testing [115, 116]. Based
on existing benchmarks and harm taxonomies of LLM risks, Weidinger et al. [117] introduce
a sociotechnical evaluation framework that identifies three AI actors with LLM safety re-
sponsibilities: AI model developers, AI application developers, and third-party stakeholders.
The mitigation strategies for these harms depend on the use cases and context. Popular
strategies include algorithmic and sociotechnical approaches [118], such as improving the
training data to mitigate social stereotypes and biases [119]; fine-tuning LLM models on
curated datasets [103]; filtering LLM outputs [120, 121]; employing special decoding tech-
niques [122, 123], adding instructions in prompts [124], monitoring the use of LLMs [118];
as well as inclusive product design and development from the beginning [125, 126, 127, 128].

2.3.4 In Situ Interfaces

Although in situ responsible AI tools are relatively nascent, there is a large body of research
in designing in-context warning tools and interfaces. For example, security and HCI re-
searchers study how to best present warnings to raise people’s online security awareness [e.g.,
129, 130, 131] and protect people from malware and phishing attacks [e.g., 132, 133, 134].
The key challenges when designing effective warning interfaces include the presentation
of comprehensible messages and supporting evidence [135, 136], engaging users [137,
138], and preventing alert fatigue and habituation [139, 140]. To address these challenges,
researchers recommend designing simple interfaces [141, 142], considering the trade-off
between blocking and non-blocking warnings [138], varying interfaces [139], and requiring
user input [143]. Using in-context warnings to improve users’ safety awareness and encour-
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age users to take protection measures can be considered a form of “digital nudging” [144,
145]. More recently, researchers have also adapted in-context security warnings to nudge
social media users to recognize and avoid online disinformation [146, 147] and reflect before
posting potentially harmful content [148, 149, 150]. Beyond platform-initiated integration
of warnings, end-users also voluntarily seek in-context alert interfaces for productivity
improvement. For example, writers use grammar checker tools like Grammarly [151], which
offer in-context warnings and scores to improve their writing. Similarly, software developers
use accessibility developer tools [152, 153] to detect potential accessibility issues during the
development process. However, there has been little work in designing and evaluating in
situ warnings for developing AI applications, particularly for responsible AI.
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Part I
EXPLAIN AI TO EVERYONE

Overview

AI models have grown increasingly complex and ubiquitous in our daily lives. There are
dire needs from different stakeholders to understand AI models. For example, AI novices
desire to learn about developing and applying AI tools to improve their productivity and
lives. AI experts aim to interpret trained AI models to debug them and build trust with end
users. Policymakers seek to understand the usage and impacts of AI models to develop
better regulations. Part I of this thesis focuses on a fundamental question: how can we
explain AI to people with diverse AI backgrounds?

To answer this question, we start by investigating interactive visualizations, as they are
powerful techniques to help users explore and understand complex systems and concepts.
We first describe CNN EXPLAINER (Chapter 3), a novel interactive visualization system
that helps AI novices learn about the inner workings of convolutional neural networks
(CNNs), the most foundational deep learning models. This chapter is adapted from work
that was published and appeared at IEEE VIS 2020 [154].

Chapter 3
CNN EXPLAINER: Learning Convolutional Neural Networks with Interactive
Visualization. Zijie J. Wang, Robert Turko, Omar Shaikh, Haekyu Park, Nilaksh
Das, Fred Hohman, Minsuk Kahng, and Duen Horng Chau. IEEE Transactions on
Visualization and Computer Graphics (TVCG), 2020.

Through an observational user study, we find that interactivity and progressive disclosure
are powerful techniques to help users learn about AI models. Based on the observation,
we extend these design techniques to help AI practitioners interpret their AI models with
WIZMAP (Chapter 4), a scalable interactive visualization tool to explain AI embeddings.
This chapter is adapted from work published and appeared at ACL 2023 [155].

Chapter 4
WIZMAP: Scalable interactive visualization for exploring large machine learning
embeddings. Zijie J. Wang, Fred Hohman, and Duen Horng Chau. Proceedings of the
61st annual meeting of the association for computational linguistics (volume 3: System
demonstrations), 2023.

The scalability of WIZMAP reveals previously unknown insights from million-scale datasets.
With the recent surge in popularity of large generative AI models, there is a dearth of large-
scale datasets documenting how users use these models. To help policymakers comprehend
the usage and impacts of AI models at scale, we introduce DIFFUSIONDB (Chapter 5), the
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first dataset of 14 million prompt-image pairs generated by real users of large text-to-image
generative models. This chapter is adapted from work published at ACL 2023 [156].

Chapter 5
DIFFUSIONDB: A large-scale prompt gallery dataset for text-to-image generative
models. Zijie J. Wang, Evan Montoya, David Munechika, Haoyang Yang, Benjamin
Hoover, and Duen Horng Chau. Proceedings of the 61st annual meeting of the associa-
tion for computational linguistics (volume 1: Long papers), 2023.
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CHAPTER 3
CNN EXPLAINER: EXPLAIN CONVOLUTIONAL NEURAL NETWORKS TO AI

NOVICES

Powered by deep learning models, AI has transformed our everyday technologies, and
it has attracted immense interest from students and practitioners who wish to learn and
apply this technology. However, beginners find it challenging to take the first step in
understanding deep learning concepts, such as convolutional neural networks (CNNs), the
foundational deep learning model architecture. A key challenge in learning about CNNs is
the intricate interplay between low-level mathematical operations and high-level integration
of such operations within the neural network. We present CNN EXPLAINER, an interactive
visualization tool designed for non-experts to learn about both CNN’s high-level model
structure and low-level mathematical operations. We conducted a user study with 16 students
to evaluate the usefulness and usability of CNN EXPLAINER. The study highlights that CNN
EXPLAINER is easy to use, enjoyable, and helps participants learn about CNNs. Through
a qualitative analysis, we distill design lessons for future visualization tools designed to
explain AI concepts to novices.

3.1 Introduction

Deep learning enables many of our everyday technologies. Its continued success and
potential application in diverse domains has attracted immense interest from students and
practitioners who wish to learn and apply this technology. However, many beginners find
it challenging to take the first step in studying and understanding deep learning concepts.
For example, convolutional neural networks (CNNs), a foundational deep learning model
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Figure 3.1: In CNN EXPLAINER, tightly integrated views with different levels of abstractions work
together to help users more easily learn about the intricate interplay between a CNN’s high-level
structure and low-level mathematical operations. (A) the Overview summarizes connections of
all neurons; (B) the Elastic View animates the intermediate convolutional computation of the user-
selected neuron in the Overview; and (C) Interactive Formula interactively demonstrates the detailed
calculation on the selected input in the Elastic View.
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architecture, is often one of the first and most widely used models that students learn. CNNs
are often used in image classification, achieving state-of-the-art performance [157]. However,
through interviews with deep learning instructors and a survey of past students, we found that
even for this “introductory” model, it can be challenging for beginners to understand how
inputs (e.g., image data) are transformed into class predictions. This steep learning curve
stems from CNN’s complexity, which typically leverages many computational layers to reach
a final decision. Within a CNN, there are many types of network layers (e.g., fully-connected,
convolution, and activation), each with a different structure and underlying mathematical
operations. Thus, a student needs to develop a mental model of not only how each layer
operates, but also how to choose different layers that work together to transform data.
Therefore, a key challenge in learning about CNNs is the intricate interplay between low-level
mathematical operations and high-level integration of such operations within the network.

Key challenges in designing learning tools for CNNs. There is a growing body of
research that uses interactive visualization to explain the complex mechanisms of modern ma-
chine learning algorithms, such as TensorFlow Playground [18] and GAN Lab [158], which
help students learn about dense neural networks and generative adversarial networks (GANs)
respectively. Regarding CNNs, some existing visualization tools focus on demonstrating
the high-level model structure and connections between layers (e.g., Harley’s Node-Link
Visualization [159]), while others focus on explaining the low-level mathematical operations
(e.g., Karpathy’s interactive CNN demo [160]). There is no visual learning tool that explains
and connects CNN concepts from both levels of abstraction. This interplay between global
model structure and local layer operations has been identified as one of the main obstacles
to learning deep learning models, as discussed in [18] and corroborated from our interviews
with instructors and student survey. CNN EXPLAINER aims to bridge this critical gap.

Contributions. In this work, we contribute:

• CNN EXPLAINER, an interactive visualization tool designed for non-experts to learn
about both CNN’s high-level model structure and low-level mathematical operations,
addressing learners’ key challenge in connecting unfamiliar layer mechanisms with
complex model structures. Our tool advances over prior work [159, 160], overcoming
unique design challenges identified from a literature review, instructor interviews and a
survey with past students (§ 3.2).

• Novel interactive system design of CNN EXPLAINER (Fig. 3.2), which adapts familiar
techniques such as overview + detail and animation to simultaneously summarize intri-
cate model structure, while providing context for users to inspect detailed mathematical
operations. CNN EXPLAINER’s visualization techniques work together through fluid
transitions between different abstraction levels (Fig. 3.1), helping users gain a more
comprehensive understanding of complex concepts within CNNs (§ 3.4).

• Design lessons distilled from user studies on an interactive visualization tool for
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Figure 3.2: CNN EXPLAINER empowers AI novices to easily learn how CNNs transform an input
image into a category prediction. (A) The Overview visualizes a CNN architecture where each
neuron is encoded as a square with a heatmap representing its output. (B) Clicking a neuron reveals
how its activations are computed from the previous layer through animations of sliding kernels. (C)
Convolutional Interactive Formula View explains underlying mathematics of convolutions.

machine learning education. While visual and interactive approaches have been gaining
popularity in explaining machine learning concepts to non-experts, little work has been
done to evaluate such tools [161, 162]. We interviewed four instructors who have
taught CNNs and conducted a survey with 19 students who have previously learned
about CNNs to identify the needs and challenges for a deep learning educational tool
(§ 3.2). In addition, we conducted an observational study with 16 students to evaluate the
usability of CNN EXPLAINER, and investigated how our tool could help students better
understand CNN concepts (§ 3.6). Based on these studies, we discuss the advantages
and limitations of interactive visual educational tools for machine learning.

• An open-source, web-based implementation that broadens the public’s education
access to modern deep learning techniques without the need for advanced computational
resources. Deploying deep learning models conventionally requires significant comput-
ing resources, e.g., servers with powerful hardware. In addition, even with a dedicated
backend server, it is challenging to support a large number of concurrent users. Instead,
CNN EXPLAINER is developed using modern web technologies, where all results are
directly and efficiently computed in users’ web browsers (§ 3.4.7). Therefore, anyone
can access CNN EXPLAINER using their web browser without the need for installation.

Broadening impact of visualization for AI. In recent years, many visualization systems
have been developed for deep learning, but very few are designed for non-experts [159, 158,
163, 18], as surveyed in [164]. CNN EXPLAINER joins visualization research that introduces
beginners to modern machine learning concepts. Applying visualization techniques to
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Figure 3.3: Survey results from 19 past CNN learners.

explain the inner workings of complex models has great potential. We hope our work will
inspire further research and development of visual learning tools that help democratize and
lower the barrier to understanding and applying artificial intelligent technologies.

3.2 Formative Research & Design Challenges

Our goal is to build an interactive visual learning tool to help students gain an understanding
of key CNN concepts to design their own models. To identify the learning challenges faced
by the students, we conducted interviews with deep learning instructors and surveyed past
students.

Instructor interviews. To inform our tool’s design, we recruited 4 instructors (2 female,
2 male) who have taught CNNs in a large university. We refer to them as T1-T4 throughout
our discussion. One instructor teaches computer vision, and the others teach deep learning.
We interviewed them one-on-one in a conference room (3/4) and via a video-conferencing
software (1/4); each interview lasted around 30 minutes. Through these semi-structured
interviews, we learned that (1) instructors currently rely on simple illustrations with toy
examples to explain CNN concepts, and an interactive tool like TensorFlow Playground with
real image inputs would be highly appreciated; and (2) key challenges exist for instructors
teaching and students learning about CNNs, which informed us to design a student survey.

Student survey. After the interviews, we recruited students from a large university who
have previously studied CNNs to fill out an online survey. We received 43 responses, and 19
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of them (4 female, 15 male) met the criteria. Among these 19 participants, 10 were Ph.D.
students, 3 were M.S. students, 5 were undergraduates, and 1 was a faculty member. We
asked participants what were “the biggest challenges in studying CNNs” and “the most
helpful features if there was a visualization tool for explaining CNNs to beginners”. We
provided pre-selected options based on the prior instructor interviews, but participants could
write down their own responses if it was not included in the options. The aggregated results
of this survey are shown in Fig. 3.3.

Together with a literature review, we synthesized our findings from these two studies
into the following five design challenges (C1-C5).

C1. Intricate model structure. CNN models consist of many layers, each having a
different structure and underlying mathematical functions [157]. Fewer past students
listed CNN structure as their biggest challenge, but most of them believe a visual
learning tool should explain the structure (Fig. 3.3), as the complex construction of
CNNs can be overwhelming, especially for beginners who just started learning. T2
said “It can be very hard for them [students with less knowledge of neural networks] to
understand the structure of CNNs, you know, the connections between layers.”

C2. Complex layer operations. Different layers serve different purposes in CNNs [165].
For example, convolutional layers exploit the spatially local correlations in inputs—
each convolutional neuron connects to only a small region of its input; whereas max
pooling layers introduce regularization to prevent overfitting. T1 said, “The most
challenging part is learning the math behind it [CNN model].” Many students also
reported that CNN layer computations are the most challenging learning objective
(Fig. 3.3). To make CNNs perform better than other models in tasks like image
classification, these models have complex and unique mathematical operations that
many beginners may not have seen elsewhere.

C3. Connection between model structure and layer operation. Based on instructor in-
terviews and the survey results from past students (Fig. 3.3), one of the cruxes to under-
stand CNNs is understanding the interplay between low-level mathematical operations
(C2) and the high-level model structure (C1). Smilkov et al., creators of the popular
dense neural network learning tool Tensorflow Playground [18], also found this chal-
lenge key to learning about deep learning models: “It’s not trivial to translate the equa-
tions defining a deep network into a mental model of the underlying geometric trans-
formations [change of feature representations].” In other words, in addition to compre-
hending the mathematical formulas behind different layers, students are also required
to understand how each operation works within the complex, layered model structure.

C4. Effective algorithm visualization (AV). The success of applying visualization to ex-
plain machine learning algorithms to beginners [166, 18, 158] suggests that an AV tool
is a promising approach to help people more easily learn about CNNs. However, AV
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tools need to be carefully designed to be effective in helping learners gain an understand-
ing of algorithms [167]. In particular, AV systems need to clearly explain the mapping
between the algorithm and its visual encoding [168], and actively engage learners [169].

C5. Challenge in deploying interactive learning tools. Most neural networks are written
in deep learning frameworks, such as TensorFlow [170] and PyTorch [171]. Although
these libraries have made it much easier to create AI models, they require users to
understand key concepts of deep learning in the first place [172]. Can we make under-
standing CNNs more accessible without installation and coding, so that everyone has
the opportunity to learn and interact with deep learning models?

The above design challenges cover most of the desired features (Fig. 3.3). We assessed the
feasibility to also support explaining backpropagation in the same tool, and we concluded
that its effective explanation will necessitate designs that are hard to be unified (e.g., back-
propagation Algorithm [173]). Indeed, T1 commented that “Deriving backpropagation is
applying a series chain rules [...] It doesn’t really make sense to visualize the gradients [in
our tool].” Supporting the training process would require client-side in-browser computation
on many data examples, which incur both high amount of data download and slow conver-
gence ([160, 158]). Therefore, as the first prototype, we decided for CNN EXPLAINER

to focus on explaining inference after a model has been trained. We plan to support the
explanation for backpropagation and training process as future work (§ 3.7).

3.3 Design Goals

Based on the identified design challenges (§ 3.2), we distill the following key design goals
(G1–G5) for CNN EXPLAINER, an interactive visualization tool to help students more
easily learn about CNNs.

G1. Visual summary of CNN models and data flow. Based on the survey results, showing
the structure of CNNs is the most desired feature for a visual learning tool (Fig. 3.3).
Therefore, to give users an overview of the structure of CNNs, we aim to create a visual
summary of a CNN model by visualizing all layer outputs and connections in one view.
This could help users to visually track how input image data are transformed to final
class predictions through a series of layer operations (C1). (§ 3.4.1)

G2. Interactive interface for mathematical formulas. Since CNNs employ various com-
plex mathematical functions to achieve high classification performance, it is important
for users to understand each mathematical operation in detail (C2). In response, we
would like to design an interactive interface for each mathematical formula, enabling
users to examine and better understand the inner-workings of layers. (§ 3.4.3)

G3. Fluid transition between different levels of abstraction. To help users connect low-
level layer mathematical mechanisms to high-level model structure (C3), we would like
to design a focus + context display of different views, and provide smooth transitions
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Flatten Elastic ExplanationBOverviewA Softmax Interactive FormulaC

C2

C1

Figure 3.4: CNN EXPLAINER helps users learn about the connection between the output layer and
its previous layer via three tightly integrated views. Users can smoothly transition between these
views to gain a more holistic understanding of the output layer’s lifeboat prediction computation.
(A) The Overview summarizes neurons and their connections. (B) The Flatten Elastic Explanation
View visualizes the often-overlooked flatten layer, helping users more easily understand how a high-
dimensional max pool 2 layer is connected to the 1-dimensional output layer. (C) The Softmax
Interactive Formula View further explains how the softmax function that precedes the output layer
normalizes the penultimate computation results (i.e., logits) into class probabilities by linking the
(C1) numbers from the formula to (C2) their visual representations within the model structure.

between them. By easily navigating through different levels of CNN model abstraction,
users can get a holistic picture of how CNN works. (§ 3.4.4)

G4. Clear communication and engagement. Our goal is to design an interactive system
that is easy to understand and engaging to use so that it can help people to more easily
learn about CNNs (C4). We aim to accompany our visualizations with explanations to
help users to interpret the graphical representation of the CNN model (§ 3.4.5), and we
wish to actively engage learners through visualization customizations. (§ 3.4.6)

G5. Web-based implementation. To develop an interactive visual learning tool that is
accessible for users without installation and coding (C5), we would like to use modern
web browsers as the platform to explain the inner-workings of a CNN model, where
users can access directly on their laptops or tablets. We also open-source our code to
support future research and development of deep learning educational tools. (§ 3.4.7)

3.4 Visualization Interface of CNN EXPLAINER

CNN EXPLAINER’s interface is built on our prior prototype [175]. We visualize the for-
ward propagation, i.e., transforming an input image into a class prediction, of a trained
model (Fig. 3.5). Users can explore a CNN at different levels of abstraction through the
tightly integrated Overview (§ 3.4.1), Elastic Explanation View (§ 3.4.2), and the Interactive
Formula View (§ 3.4.3). Our tool allows users to smoothly transition between these views
(§ 3.4.4), provides text annotations and a tutorial article to help users interpret the visual-
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Figure 3.5: Illustration of Tiny VGG model used in CNN EXPLAINER: this model uses the same, but
fewer, convolutional layers as the VGGNet model [174]. We trained it to classify 10 classes of images.

Figure 3.6: Diverging color scales in CNN EXPLAINER.

izations (§ 3.4.5), and engages them to test hypotheses through visualization customizations
(§ 3.4.6). The system is targeted towards beginners and describes all mathematical operations
necessary for a CNN to classify an image.

Color scales are used throughout the visualization to show the impact of weight, bias,
and activation map values. Consistently in the interface, a red to blue color scale is used to
visualize neuron activation maps as heatmaps, and a yellow to green color scale represents
weights and biases (Fig. 3.6). A persistent color scale legend is present across all views,
so the user always has context for the displayed colors. We chose these distinct, diverging
color scales with white representing zero, so that a user can easily differentiate positive
and negative values. We group layers in the Tiny VGG model, our CNN architecture, into
four units and two modules (Fig. 3.5). Each unit starts with one convolutional layer. Both
modules are identical and contain the same sequence of operations and hyperparameters. To
analyze neuron activations throughout the network with varying contexts, users can alter the
range of the heatmap color scale (§ 3.4.6).

3.4.1 Overview

The Overview (Fig. 3.2A, Fig. 3.4A) is the opening view of CNN EXPLAINER. This view
represents the high-level structure of a CNN: neurons grouped into layers with distinct,
sequential operations. It shows neuron activation maps for all layers represented as heatmaps
with a diverging red to blue color scale. Neurons in consecutive layers are connected with
edges, which connect each neuron to its inputs; to see these edges, users simply can hover
over any activation map. In the model, neurons in convolutional layers and the output layer
are fully connected to the previous layer, while all other neurons are only connected to one
neuron in the previous layer.
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3.4.2 Elastic Explanation View

The Elastic Explanation Views visualize the computations that leads to an intermediate result
without overwhelming users with low-level mathematical operations. CNN EXPLAINER

enters two elastic views after a user clicks a convolutional or an output neuron from the
Overview. After the transition, far-away heatmaps and edges fade out to help users focus on
the selected layers while providing CNN structural context in the background (Fig. 3.2A).

Explaining the Convolutional Layer (Fig. 3.2B). The Convolutional Elastic Explana-
tion View applies a convolution on each input node of the selected neuron, visualized by a
kernel sliding across the input neurons, which yields an intermediate result for each input
neuron. This sliding kernel forms the output heatmap during the animation, which imitates
the internal process during a convolution operation. While the sliding kernel animation is in
progress, the edges in this view are represented as flowing-dashed lines; upon the animations
completion, the edges transition to solid lines.

Explaining the Flatten Layer (Fig. 3.4B). The Flatten Elastic Explanation View visu-
alizes the operation of transforming an n-dimensional tensor into a 1-dimensional tensor
by traversing pixels in row-major order. This flattening operation is often necessary in a
CNN prior to classification so that the fully-connected output layer can make classification
decisions. The view represents each neuron in the flatten layer as a short line whose color
is the same as its source pixel in the previous layer. Then, edges connect these neurons with
their source components and intermediate results. These edges are colored by the model’s
weight value. Users can hover over any connection to highlight the associated edges as well
as the flatten layer’s neuron and the pixel value from the previous layer.

3.4.3 Interactive Formula View

The Interactive Formula View consists of four variations for convolutional, ReLU activation,
pooling, and softmax layers. After users have built up a mental model of the CNN model
structure from the previous Overview and Elastic Explanation Views, these four views
demonstrate the detailed mathematics occurring in each layer.

Explaining Convolution, ReLU Activation, and Pooling (Fig. 3.7A, B, C). Each view
animates the window-sliding operation on the input and output matrices over an interval,
so that the user can understand how each element in the input is connected to the output,
and vice versa. The user can interact with these matrices by hovering over the heatmaps to
control the position of the sliding window. For example, in the Convolutional Interactive
Formula View (§ 3.4.3A), as the user controls the window (kernel) position in either the
input or the output matrix, this view visualizes the dot-product formula with input numbers
and kernel weights directly extracted from the current kernel. This synchronization between
the input, the output and the mathematical function enables the user to better understand
how the kernel convolves a matrix in convolutional layers.
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Figure 3.7: The Interactive Formula Views explain the underlying mathematical operations of a
CNN. (A) shows the element-wise dot-product occurring in a convolutional neuron, (B) visualizes
the activation function ReLU, and (C) illustrates how max pooling works. Users can hover over
heatmaps to display an operation’s input-to-output mapping. (D) interactively explains the softmax
function, helping users connect numbers from the formula to their visual representations. Users can
click the info button to scroll to the corresponding section in the tutorial article, and the play button

to start the window sliding animation in (A)-(C).

Explaining the Softmax Activation (Fig. 3.7D). This view outlines the operations
necessary to calculate the classification score. It is accessible from the Flatten Elastic
Explanation View to explain how the results (logits) from the previous view lead to the
final classification. The view consists of logit values encoded as circles and colored with
a light orange to dark orange color scale, which provides users with a visual cue of the
importance of every class. This view also includes a corresponding equation, which explains
how the classification score is computed. When users enter this view, pairs of each logit
circle and its corresponding value in the equation appear sequentially with animations. As
a user hovers over a logit circle, its value will be highlighted in the equation along with
the logit circle itself, so the user can understand how each logit contributes to the softmax
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function. Hovering over numbers in the equation will also highlight the appropriate logit
circles. Interacting with logit circles and the mathematical equation in combination allows a
user to discern the impact that every logit has on the classification score in the output layer.

3.4.4 Transitions Between Views

The Overview is the starting state of CNN EXPLAINER and shows the model architecture.
From this high-level view, the user can begin inspecting layers, connectivity, classifications,
and tracing activations of neurons through the model. When a user is interested in more
detail, they can click on neuron activation maps in the visualization. Neurons in a layer
that have simple one-to-one connections to a neuron in the previous layer do not require an
auxiliary Elastic Explanation View, so upon clicking one of these neurons, a user will be
able to enter the Interactive Formula View to understand the low-level operation that a tensor
undergoes at that layer. If a neuron has more complex connectivity, then the user will enter
an Elastic Explanation View first. In this view, CNN EXPLAINER uses visualizations and
annotations before displaying mathematics. Through further interaction, a user can hover
and click on parts of the Elastic Explanation View to uncover the mathematical operations
as well as examine the values of weights and biases. The low-level Interactive Formula
Views are only shown after transitioning from the previous two views, so that users can learn
about the underlying mathemtical operations after hainvg a mental model of the complex
and layered CNN model structure.

3.4.5 Visualizations with Explanations

CNN EXPLAINER is accompanied by an interactive tutorial article beneath the interface
that explains CNN layer functions, hyperparameters, and outlines CNN EXPLAINER’s
interactive features. Learners can read freely, or jump to specific sections by clicking layer
names or the info buttons (Fig. 3.7) from the main visualization. The article provides
beginner users detailed information regarding CNNs complementary to the visualization.

Additionally, text annotations are placed throughout the visualization, which further
guide users and explain concepts that are not easily discernible from the visualization alone.
These annotations help users map the underlying algorithm to its visual encoding.

3.4.6 Customizable Visualizations

The Control Panel located at the top of the visualization (Fig. 3.2) allows users to alter the
CNN input image and edit overall representations of the network. The Hyperparameter
Widget (Fig. 3.8) enables the user to experiment with different convolution hyperparameters.

Change input image. Users can choose between (1) preloaded input
images for each output class, or (2) upload their own custom image. Preloaded images allow
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Figure 3.8: The Hyperparameter Widget, a component of the accompanying interactive article, allows
users to adjust hyperparameters and observe in real time how the kernel’s sliding pattern changes.

a user to easily access data from the classes the model was trained on. User can also freely
upload any image for classification into the ten classes the network was trained on. CNN
EXPLAINER resizes a user’s image while preserving the aspect ratio to fit one dimension
of the model input size, and then crop the central region if the other dimensions do not
match. The fourth of six AV tool engagement levels allows users to change the AV tool’s
input [176]. Supporting custom images engages users, by allowing them to analyze the
network’s classification decisions and interactively test hypotheses on diverse image inputs.

Show network details. A user can toggle the “Show detail” button, which
displays additional network specifications in the Overview. When toggled on, the Overview
will reveal layer dimensions and show color scale legends. Additionally, a user can vary the
activation map color scale range. The CNN architecture presented by CNN EXPLAINER is
grouped into four units and two modules (Fig. 3.5). By modifying the drop-down menu in
the Control Panel, a user can adjust the color scale range used by the network to investigate
activations with different groupings.

Explore hyperparameter impact. The tutorial article (§ 3.4.5) includes an interactive
Hyperparameter Widget that allows users to experiment with convolutional hyperparameters
(Fig. 3.8). Users can adjust the input and hyperparameters of the stand-alone visualization to
test how different hyperparameters change the sliding convolutional kernel and the output’s
dimensions. This interactive element emphasizes learning through experimentation by
supplementing knowledge gained from reading the article and using the main visualization.

3.4.7 Web-based, Open-sourced Implementation

CNN EXPLAINER is a web-based, open-sourced visualization tool to teach students the
foundations of CNNs. A new user only needs a modern web-broswer to access our tool, no
installation required. Additionally, other datasets and linear models can be quickly applied
to our visualization system due to our robust implementation.
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Model Training. The CNN architecture, Tiny VGG (Fig. 3.5), presented by CNN
EXPLAINER for image classification is inspired by both the popular deep learning architec-
ture, VGGNet [174], and Stanford’s CS231n course notes [177]. It is trained on the Tiny
ImageNet dataset [178]. The training dataset consists of 200 image classes and contains
100,000 64×64 RGB images, while the validation dataset contains 10,000 images across
the 200 image classes. The model is trained using TensorFlow [170] on 10 handpicked,
everyday classes: lifeboat , ladybug , bell pepper , pizza , school bus , koala , espresso , red panda , orange ,
and sport car . During the training process, the batch size and learning rate are fine-tuned
using a 5-fold-cross-validation scheme. This simple model achieves a 70.8% top-1 accuracy
on the validation dataset.

Front-end Visualization. CNN EXPLAINER loads the pre-trained Tiny VGG model
and computes forward propagation results in real time in a user’s web browser using
TensorFlow.js [179]. These results are visualized using D3.js [180] throughout all views.

3.5 Usage Scenarios

3.5.1 Beginner Learning Layer Connectivity

Janis is a virology researcher using CNNs in a current project. Through an online deep
learning course she has a general understanding of the goals of applying CNNs, and some
basic knowledge of different types of CNN layers, but she needs help filling in some gaps
in knowledge. Interested in learning how a 3-dimensional input (RGB image) leads to a
1-dimensional output (vector of class probabilities) in a CNN, Janis begins exploring the
architecture from the Overview (Fig. 3.4A).

After clicking the “Show detail” button, Janis notices that the output layer is a 1-
dimensional tensor of size 10, while max_pool_2, the previous layer, is a 3-dimensional
(13×13×10) tensor. Confused, she hovers over a neuron in the output layer to inspect
connections between the final two layers of the architecture: the max_pool_2 layer has 10
neurons; the output layer has 10 neurons each representing a class label, and the output

layer is fully-connected to the max_pool_2 layer. She clicks that output neuron, which
transitions the Overview (Fig. 3.4A) to the Flatten Elastic Explanation View (Fig. 3.4B).
She notices that edges between these two layers intersect a 1-dimensional flatten layer
and pass through a softmax function. By hovering over pixels from the activation map,
Janis understands how the 2-dimensional matrix is “unwrapped” to yield a portion of the
1-dimensional flatten layer. As she continues to follow the edge after the flatten layer,
she clicks the softmax button which leads her to the Softmax Interactive Formula View
(Fig. 3.4C). She learns how the outputs of the flatten layer are normalized by observing
the equation linked with logits through animations. Janis recognizes that her previous
coursework has not taught these “hidden” operations prior to the output layer, which flatten
and normalize the output of the max_pool_2 layer. Instead of searching through lecture
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videos and textbooks, CNN EXPLAINER enables Janis to learn these often-overlooked
operations through a hierarchy of interactive views in a stand-alone website. She now feels
more equipped to apply CNNs to her virology research.

3.5.2 Teaching Through Interactive Experimentation

A university professor, Damian, is currently teaching a computer vision class which covers
CNNs. Damian begins his lecture with standard slides. After describing the theory of
convolutions, he opens CNN EXPLAINER to demonstrate the convolution operation working
inside a full CNN for image classification. With CNN EXPLAINER projected to the class,
Damian transitions from the Overview (Fig. 3.2A) to the Convolutional Elastic Explanation
View (Fig. 3.2B). Damian encourages the class to interpret the sliding window animation
(Fig. 3.1B) as it generates several intermediate results. He then asks the class to predict kernel
weights in a specific neuron. To test student’s hypotheses, Damian enters the Convolutional
Interactive Formula View (Fig. 3.2C), to display the convolution operation with the true
kernel weights. In this view, he can hover over the input and output matrices to answer
questions from the class, and display computations behind the operation.

Recalled from theory, a student asks a question regarding the impact of altering the stride
hyperparameter on the animated sliding window in convolutional layers. To illustrate the
impact of alternative hyperparameters, Damian scrolls down to the “Convolutional Layer”
section of the complementary article, where he experiments by adjusting stride and other
hyperparameters with the Hyperparameter Widget (Fig. 3.8) in front of the class. CNN
EXPLAINER is the first software that allows Damian to explain convolutional operations
and hyperparameters with real image inputs, and quickly answer students’ questions in
class. Previously, Damian had to draw illustrations with simple matrix inputs on slides or a
chalkboard. Finally, to reinforce the concepts and encourage individual experimentation,
Damian provides the class with a URL to the web-based CNN EXPLAINER for students to
return to in the future.

3.6 Observational Study

We conducted an observational study to investigate how CNN EXPLAINER’s target users
(e.g., aspiring deep learning students) would use this tool to learn about CNNs, and also to
test the tool’s usability.

3.6.1 Participants

CNN EXPLAINER is designed for deep learning beginners who are interested in learning
CNNs. In this study, we aimed to recruit participants who aspire to learn about CNNs and
have some knowledge of basic machine learning concepts (e.g., knowing what an image
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Figure 3.9: Average ratings from 16 participants regarding the usability and usefulness of CNN
EXPLAINER. Top: Participants thought CNN EXPLAINER was easy to use, enjoyable, and helped
them learn about CNNs. Bottom: All features, especially animations, were rated favorably.

classifier is). We recruited 16 student participants from a large university (4 female, 12 male)
through internal mailing lists (e.g., machine learning and computer science Ph.D., M.S., and
undergraduate students). Seven participants were Ph.D. students, seven were M.S. students,
and the other two were undergraduates. All participants were interested in learning CNNs,
and none of them had known CNN EXPLAINER before. Participants self-reported their
level of knowledge on non-neural network machine learning techniques, with an average
score of 3.26 on a scale of 0 to 5 (0 being “no knowledge” and 5 being “expert”); and an
average score of 2.06 on CNNs (on the same scale). No participant self-reported a score
of 5 for their knowledge on CNNs, and one participant had a score of 0. To help better
organize our discussion, we refer to participants with CNN knowledge score of 0, 1 or 2 as
B1-B11, where “B” stands for “Beginner”; and those with score of 3 or 4 as K1-K5, where
“K” stands for “Knowledgeable.”

3.6.2 Procedure

We conducted this study with participants one-on-one via video-conferencing software.
With the permission of all participants, we recorded the participants’ audio and computer
screen for subsequent analysis. After participants signed consent forms, we provided them
a 5-minute overview of CNNs, followed by a 3-minute tutorial of CNN EXPLAINER.
Participants then freely explored our tool in their computer’s web browser. We also provided
a feature checklist, which outlined the main features of our tool and encouraged participants
to try as many features as they could. During the study, participants were asked to think
aloud and share their computer screen with us; they were encouraged to ask questions when
necessary. Each session ended with a usability questionnaire coupled with an exit interview
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that asked participants about their process of using CNN EXPLAINER, and if this tool
could be helpful for them. Each study lasted around 50 minutes, and we compensated each
participant with a $10 Amazon Gift card.

3.6.3 Results and Design Lessons

The exit questionnaire included a series of 7-point Likert-scale questions about the utility
and usefulness of different views in CNN EXPLAINER (Fig. 3.9). All average Likert
rating were above 6 except the rating of “easy to understand”. From the high ratings and
our observations, participants found our tool easy to use and understand, retained a high
engagement level during their session, and eventually gained a better understanding of CNN
concepts. Our observations also reflect key findings in previous AV research [167, 169].
This section describes design lessons and limitations of our tool distilled from this study.

3.6.3.1 Transitions between different views

Transitions help users link CNN operations and structures. Several participants (9/16)
commented that they liked how our tool transitions between high-level CNN structure views
and low-level mathematical explanations. It helps them better understand the interplay
between layer computations and the overall CNN data transformation—one of the key chal-
lenges for understanding CNN concepts, as we identified from our instructor interviews and
our student survey. For example, initially K4 was confused to see the Convolutional Elastic
Explanation View, but after reading the annotation text, he remarked, “Oh, I understand
what an intermediate layer is now—you run the convolution on the image, then you add
all those results to get this.” After exploring the Convolutional Interactive Formula View,
he immediately noted, “Every single aspect of the convolution layer is shown here. [This]
is super helpful.” Similarly, B5 commented, “Good to see the big picture at once and the
transition to different views [...] I like that I can hide details of a unit in a compact way and
expand it when [needed].”

CNN EXPLAINER employs the fisheye view technique for presenting the Elastic Expla-
nation Views (Fig. 3.2B, Fig. 3.4B): after transitioning from the Overview to a specific layer,
neighboring layers are still shown while further layers (lower degree-of-interest) have lower
opacity. Participants found this transition design helpful for them to learn layer-specific
details while having CNN structural context in the background. For instance, K5 said “I can
focus on the current layer but still know the same operation goes on for other layers.” Our
observations suggest that our fluid transition design between different level of abstraction
can help users to better connect unfamiliar layer mechanisms to the complex model structure.
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3.6.3.2 Animations for enjoyable learning experience

Another favorite feature of CNN EXPLAINER that participants mentioned was the use of
animations, which received the highest rating in the exit questionnaire (Fig. 3.9). In our
tool, animations serve two purposes: to assimilate the relationship between different visual
components and to help illustrate the model’s underlying operations.

Transition animations help navigating. Layer movement is animated during view
transitions. We noticed it helped participants to be aware of different views, and all partic-
ipants navigated through the views naturally. In addition to assisting with understanding
the relationship between distinct views, animation also helped them discover the linking
between different visualization elements. For example, B8 quickly found that the logit circle
is linked to its corresponding value in the formula, when she saw the circle-number pair
appear one-by-one with animation in the Softmax Interactive Formula View (Fig. 3.4C).

Algorithm animations contribute to understanding. Animations that simulate the
model’s inner-workings helped participants learn underlying operations by validating their
hypotheses. In the Convolutional Elastic Explanation View (Fig. 3.1B), we animate a
small rectangle sliding through one matrix to mimic the CNN’s internal sliding window.
We noticed many participants had their attention drawn to this animation when they first
transitioned into the Convolutional Elastic Explanation View. However, they did not report
that they understood the convolution operation until interacting with other features, such
as reading the annotation text or transitioning to the Convolutional Interactive Formula
View (Fig. 3.1C). Some participants went back to watch the animation multiple times and
commented that it made sense, for example, K5 said “Very helpful to see how the image
builds as the window slides through,” but others, such as B9 remarked, “It is not easy
to understand [convolution] using only animation.” Therefore, we hypothesize that this
animation can indirectly help users to learn about the convolution algorithm by validating
their newly formed mental models of how specific operation behave. To test this hypothesis,
a rigorous controlled experiment would be needed. Related research work on the effect
of animation in computer science education also found that algorithm animation does not
automatically improve learning, but it may lead learners to make predictions of the algorithm
behavior which in turn helps learning [181].

Animations improve learning engagement and enjoyment. We found animations
helped to increase participants’ engagement level (e.g., spending more time and effort) and
made CNN EXPLAINER more enjoyable to use. In the study, many participants repeatedly
played and viewed different animations. For example, K2 replayed the window sliding
animation multiple times: “The is very well-animated [...] I always love smooth animations.”
B7 also attributed animations to his enjoyable experience with our tool: “[The tool is]
enjoyable to use [...] I especially like the lovely animation.”
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3.6.3.3 Engaging learning through visualization customization

CNN EXPLAINER allows users to modify the visualization. For example, users can change
the input image or upload their own image for classification; CNN EXPLAINER visualizes
the new prediction with the new activation maps in every layer. Similarly, users can
interactively explore how hyperparameters affect the convolution operation (Fig. 3.8).

Customization enables hypothesis testing. Many participants used visualization cus-
tomization to test their predictions of model behaviors. For example, through inspecting the
input layer in the Overview, B4 learned that the input layer comprised multiple different
image channels (e.g., red, green, and blue). He changed the input image to a red bell pepper
from Tiny Imagenet and expected to see high values in the input red channel: “If I click the
red image, I would see...” After the updated visualization showed what he predicted, he said
“Right, it makes sense.” We found the Hyperparameter Widget also allowed participants to
test their hypotheses. While reading the description of convolution hyperparameters in the
tutorial article, K3 noted “Wait, then sometimes they won’t work”. He then modified the
hyperparatmeters in the Hyperparameter Widget and noticed some combinations indeed did
not yield a valid operation output: “It won’t be able to slide, because the stride and kernel
size don’t fit the matrix”.

Customization facilitates engagement. Participants were intrigued to modify the vi-
sualization, and their engagement sparked further interest in learning CNNs. In the study,
B6 spent a large amount of time on testing the CNN’s behavior on edge cases by finding
“difficult” images online. He searched with keywords “koala”, “koala in a car”, “bell pepper
pizza”, and eventually found a bell pepper pizza photo. Our CNN model predicted the image
as bell pepper with a probability of 0.71 and ladybug with a probability of 0.2. He commented,
“The model is not robust [...] oh, the ladybug [’s high softmax score] might come from the
red dot.” Another participant B5 uploaded his own photo as a new input image for the CNN
model. After seeing his picture being classified as espresso , B5 started to use our tool to
explore the reason of such classification by tracking back activation maps. He also asked
how do experts interpret CNNs and said he would be interested in learning more about
deep learning interpretability. This observation reflects previous findings that customizable
visualization makes learning more engaging [167, 176].

3.6.3.4 Limitations

While we found CNN EXPLAINER provided participants with an engaging and enjoyable
learning experience and helped them to more easily learn about CNNs, we also noticed
some potential improvements to our current system design from this study.

Beginners need more guidance. We found that participants with less knowledge of
CNNs needed more instructions to begin using CNN EXPLAINER. Some participants
reported that the visual representation of the CNN and animation initially were not easy
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to understand, but the tutorial article and text annotations greatly helped them to interpret
the visualizations. B8 skimmed through the tutorial article before interacting with the main
visualization. She said, “After going through the article, I think I will be able to use the
tool better [...] I think the article is good, for beginner users especially.” B2 appreciated the
ability to jump to a certain section in the article by clicking the layer name in the visualization,
and he suggested us to “include a step-by-step tutorial for first time users [...] There was too
much information, and I didn’t know where to click at the beginning”. Therefore, we believe
adding more text annotation and having a step-by-step tutorial mode could help beginners
better understand the relations between CNN operations and their visual representations.

Limited explanation of why CNN works. Some participants, especially those less
experienced with CNNs, were interested in learning why the CNN architecture works in
addition to learning how a CNN model makes predictions. For example, B7 asked “Why do
we need ReLU?” when he was learning the formula of the ReLU function. B5 understood
what a Max Pooling layer’s operation does but was unclear why it contributes to CNN’s
performance: “It is counter-intuitive that Max Pooling reduces the [representation] size
but makes the model better.” Similarly, B6 commented on the Max Pooling layer: “Why
not take the minimum value? [...] I know how to compute them [layers], but I don’t know
why we compute them.” Even though it is still an open question why CNNs work so well
for various applications [165, 182], there are some commonly accepted “intuitions” of how
different layers help this model class succeed. We briefly explain them in the tutorial article:
for example, ReLU function is used to introduce non-linearty in the model. However, we
believe it is worth designing visualizations that help users to learn about these concepts.
For example, allowing users to change the ReLU activation function to a linear function,
and then visualizing the new model predictions may help users gain understanding of why
non-linear activation functions are needed in CNNs.

3.7 Discussion and Future Work

Explaining training process and backpropagation. CNN EXPLAINER helps users to
learn how a pre-trained CNN model transforms the input image data into a class prediction.
As we identified from two preliminary studies and an observational study, students are
also interested in learning about the training process and backpropagation of CNNs. We
plan to work with instructors and students to design and develop new visualizations to help
beginners gain understanding of the training process and backpropagation in detail.

Generalizing to other layer types and neural network models. Our observational
study demonstrated that CNN EXPLAINER helps users more easily understand low-level
layer operations, high-level model structure, and their connections. We can adapt the
Interactive Formula Views to explain other layer types (e.g., Leaky ReLU [183]) or a
combination of layers (e.g. Residual Block [184]). Similarly, the transition between
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different levels of abstraction can be generalized to other neural networks, such as long
short-term memory networks [185] and Transformer models [186] that require learners to
understand the intricate layer operations in the context of a complex network structure.

Integrating algorithm visualization best practices. Existing work has studied how to
design effective visualizations to help students learn algorithms. CNN EXPLAINER applies
two key design principles from AV—visualizations with explanations and customizable visu-
alizations (G4). However, there are many other AV design practices that future researchers
can integrate in educational deep learning tools, such as giving interactive “quizzes” during
the visualization process [187] and encouraging users to build their own visualizations [188].

Quantitative evaluation of educational effectiveness. We conducted a qualitative obser-
vational study to evaluate the usefulness and usability of CNN EXPLAINER. Further quantita-
tive user studies would help us investigate how visualization tools help users gain understand-
ing of deep learning concepts. We will draw inspiration from recent research [161, 189] to as-
sess users’ engagement level and content understanding through analysis of interaction logs.

3.8 Conclusion

As deep learning is used throughout our everyday life, it is important to help learners take
the first step toward understanding this promising yet complex technology. In this work, we
present CNN EXPLAINER, an interactive visualization system designed for non-experts to
more easily learn about CNNs. Our tool runs in modern web browsers and is open-sourced,
broadening the public’s education access to modern AI techniques. We discussed design
lessons learned from our iterative design process and an observational user study. We hope
our work will inspire further research and development of visualization tools that help de-
mocratize and lower the barrier to understanding and appropriately applying AI technologies.

3.9 Impact

To broaden the public’s education access to modern AI technologies, we release CNN
EXPLAINER as an open-source web-based tool. The public demo has transformed AI
education: it has been integrated into deep learning courses (Carnegie Mellon, Georgia
Tech, University of Tokyo, UC Santa Barbara, and more), helping 360k+ novices from 200+
countries learn about CNNs, and it has received 7k+ starts on GitHub. It has also been
highlighted as a top visualization publication (top 1%) invited to present in SIGGRAPH.

38



CHAPTER 4
WIZMAP: EXPLAIN AI DATA AND EMBEDDINGS TO PRACTITIONERS

Powered by neural networks, modern AI models can learn high-dimensional embedding
representations that capture the domain semantics and relationships in the training data.
These embeddings are extremely useful for AI researchers and practitioners to probe what the
AI models have learned [15]. However, it can be difficult to interpret embeddings in practice,
as these high-dimensional representations are often opaque, complex, and can contain
unpredictable structures [190]. Moreover, practitioners also face scalability challenges as
large training datasets can require them to study millions of embeddings holistically [191].
To help AI practitioners explore and interpret large embeddings in their AI models, we
design and develop WIZMAP, a scalable interactive visualization tool for AI embeddings.
We leverage dimensionality reduction and a familiar map-like interaction design to visualize
any AI embedding models (Fig. 4.2). In addition, we introduce a novel technique to generate
multi-resolution embedding summaries to help users interpret large-scale embedding data.

4.1 Introduction

Modern ML models learn high-dimensional embedding representations to capture the
domain semantics and relationships in the training data [15]. ML researchers and domain
experts are increasingly using expressive embedding representations to interpret trained
models [21], develop models for new domains [22] and modalities [23], as well as analyze
and synthesize new datasets [24]. However, it can be difficult to interpret and use embeddings
in practice, as these high-dimensional representations are often opaque, complex, and can
contain unpredictable structures [192]. Furthermore, analysts face scalability challenges as
large datasets can require them to study millions of embeddings holistically [191].

To tackle these challenges, researchers have proposed several interactive visualization
tools to help users explore embedding spaces [e.g., 36, 39]. These tools often visualize
embeddings in a low-dimensional scatter plot where users can browse, filter, and compare

Figure 4.1: WIZMAP enables users to explore embeddings at different levels of detail. (A) The con-
tour plot with automatically-generated embedding summaries provides an overview. (B) Embedding
summaries adjust in resolution as users zoom in. (C) The scatter plot enables the investigation of
individual embeddings.
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Figure 4.2: WIZMAP empowers AI researchers and practitioners to easily explore and interpret
millions of embedding vectors across different levels of granularity. Consider the task of investigating
the embeddings of all 63k natural language processing paper abstracts indexed in ACL Anthology
from 1980 to 2022. (A) The Map View tightly integrates a contour layer, a scatter plot, and
automatically generated multi-resolution embedding summaries to help users navigate through the
large embedding space. (B) The Search Panel enables users to rapidly test their hypotheses through
a fast full-text embedding search. (C) The Control Panel allows users to customize embedding
visualizations, compare multiple embedding groups, and observe how embeddings evolve over time.

embedding points. However, for large datasets, it is taxing or even implausible to inspect
embedded data point by point to make sense of the global structure of an embedding space.
Alternatively, recent research explores using contour plots to summarize embeddings [193,
194]. Although contour abstractions enable users to obtain an overview of the embedding
space and compare multiple embeddings through superposition, a user study reveals that
contour plots restrict users’ exploration of an embedding’s local structures, where users
would prefer to have more visual context [194]. To bridge this critical gap between two
visualization approaches and provide users with a holistic view, we design and develop
WIZMAP (Fig. 4.2). Our work makes the following major contributions:

• WIZMAP, a scalable interactive visualization tool that empowers ML researchers
and domain experts to explore and interpret embeddings with millions of points. Our
tool employs a familiar map-like interaction design and fluidly presents adaptive visual
summaries of embeddings across different levels of granularity (Fig. 4.1, § 4.3).

• Novel and efficient method to generate multi-resolution embedding summaries. To au-
tomatically summarize embedding neighborhoods with different degrees of granularity, we
construct a quadtree [195] from embedding points and extract keywords (text data) or ex-
emplar points (other data types) from tree nodes with efficient branch aggregation (§ 4.2).
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Figure 4.3: (A) A quadtree recursively partitions a 2D space into four equally-sized squares, (B)
and each square is represented as a tree node. WIZMAP efficiently aggregates information from the
leaves to the root, summarizing embeddings at different levels of granularity.

• An open-source1 and web-based implementation that lowers the barrier to inter-
preting and using embeddings. We develop WIZMAP with modern web technologies
such as WebGL and Web Workers so that anyone can access the tool directly in both
their web browsers and computational notebooks without a need for dedicated backend
servers (§ 4.3.4). For a demo video of WIZMAP, visit https://youtu.be/8fJG87QVceQ.

4.2 Multi-scale Embedding Summarization

Researchers have highlighted users’ desire for embedding visualizations to provide visual
contexts and embedding summaries to facilitate exploration of various regions within the
embedding space [194]. However, generating embedding summaries is challenging for two
reasons. First, efficiently summarizing millions of data points in larger datasets can be a
formidable task. Second, selecting the embedding regions to summarize is difficult, as users
possess varying interests in regions of different sizes and levels of granularity. To tackle this
challenge, we propose a novel method to automatically generate multi-resolution embedding
summaries at scale.

Multi-resolution Quadtree Aggregation. First, we apply a dimensionality reduction
technique such as UMAP to project high-dimensional embedding vectors into 2D points.
From these points, we construct a quadtree [195], a tree data structure that recursively
partitions a 2D space into four equally-sized squares, each represented as a node. Each
data point exists in a unique leaf node. To summarize embeddings across different levels
of granularity, we traverse the tree bottom up. In each iteration, we first extract summaries
of embeddings in each leaf node, and then merge the leaf nodes at the lowest level with
their parent node. This process continues recursively, with larger and larger leaf nodes
being formed until the entire tree is merged into a single node at the root. Finally, we map
pre-computed embedding summaries to a suitable granularity level and dynamically show
them as users zoom in or out in WIZMAP (Fig. 4.3.1).

Scalable Leaf-level Summarization. When performing quadtree aggregation, re-

1WIZMAP code: https://github.com/poloclub/wizmap
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Figure 4.4: The Map View provides an overview via a contour plot and auto-generated multi-
resolution embedding labels placed around high-density areas.

searchers have the flexibility to choose any suitable method for summarizing embedding
from leaf nodes. For text embeddings, we propose t-TF-IDF (tile-based TF-IDF) that
adapts TF-IDF (term frequency-inverse document frequency) to extract keywords from
leaf nodes [196]. Our approach is similar to c-TF-IDF (classed-based TF-IDF) that com-
bines documents in a cluster into a meta-document before computing TF-IDF scores [197].
Here, we merge all documents in each leaf node (i.e., a tile in the quadtree partition) as
a meta-document and compute TF-IDF scores across all leaf nodes. Finally, we extract
keywords with the highest t-TF-IDF scores to summarize embeddings in a leaf node. This
approach is scalable and complementary to quadtree aggregation. Because our document
merging is hierarchical, we only construct the n-gram count matrix once and update it in
each aggregation iteration with just one matrix multiplication. Summarizing 1.8 million text
embeddings across three granularity levels takes only about 55 seconds on a MacBook Pro.
For non-text data, we summarize embeddings by finding points closest to the embedding
centroid in a leaf node.

4.3 User Interface

Leveraging pre-computed multi-resolution embedding summarization (§ 4.2), WIZMAP

tightly integrates three interface components (Fig. 4.2A–C).

4.3.1 Map View

The Map View (Fig. 4.2A) is the primary view of WIZMAP. It provides a familiar map-
like interface that allows users to pan and zoom to explore different embedding regions
with varying sizes. To help users easily investigate both the global structure and local
neighborhoods of their embeddings, the Map View integrates three layers of visualization.

Distribution Contour. To provide users with a quick overview of the global structure of
their embeddings, we use Kernel Density Estimation (KDE) [198] to estimate the distribution
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Figure 4.5: WIZMAP allows users to observe how embeddings change over time. For example, when
exploring 63k ACL paper abstracts, clicking the play button in the Control Panel animates the
visualizations to show embeddings of papers published in each year in purple and the distribution of
all papers in blue. This animation highlights changes in ACL research topics over time, such as the
decline in popularity of grammar and the rise of question-answering.

of 2D embedding points. We use a standard multivariate Gaussian kernel with a Silverman
bandwidth for the KDE model [199]. Next, we compute the distribution likelihoods over a
200×200 2D grid whose size is determined by the range of all embedding points. Finally, we
visualize the likelihoods over the grid as a contour plot (Fig. 4.4), highlighting the high-level
density distribution of users’ embeddings. Researchers can adjust the grid density, and we
tune it by balancing the computation time and the contour resolution.

Multi-resolution Labels. The Map View helps users interpret embeddings across various
levels of granularity by dynamically providing pre-computed contextual labels. It overlays
summaries generated via quadtree aggregation (§ 4.2) onto the distribution contour and
scatter plot. Users can hover over to see the summary from a quadtree tile closest to the
cursor. Our tool adjusts the label’s tile size based on the user’s current zoom level. For
example, when a user zooms into a small region, the Map View shows summaries computed
at a lower level in the quadtree. In addition to on-demand embedding summaries, this
view also automatically labels high-density regions (Fig. 4.4) by showing summaries from
quadtree tiles near the geometric centers of high-probability contour polygons.

Scatter Plot. To help users pinpoint embeddings within their local neighborhoods, the
Map View visualizes all embedding points in a scatter plot with their 2D positions. Users
can specify the color of each embedding point to encode additional features, such as the
class of embeddings. Also, users can hover over an embedding point to reveal its original
data, such as ACL paper abstracts (§ 4.4.1).

4.3.2 Control Panel

The Map View shows all three visualization layers by default, and users can customize them
to fit their needs by clicking buttons in the Control Panel (Fig. 4.2C). In addition, WIZMAP

allows users to compare multiple embedding groups in the same embedding space by super-
imposing them in the Map View [200]. In the case of embeddings that include times, users can
use a slider in the Control Panel to observe changes in the embeddings over time (Fig. 4.5).
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4.3.3 Search Panel

Searching and filtering help users discover interesting embedding patterns and test hy-
pothesis regarding embedding structures [201]. In WIZMAP, users can use the Search
Panel (Fig. 4.2B) to search text embeddings including specified words in the original data.
The panel shows search results, and the Map View highlights their corresponding points.

4.3.4 Scalable & Open-source Implementation

WIZMAP is scalable to millions of embedding points, providing a seamless user experience
with zooming and animations, all within web browsers without backend servers. To achieve
this, we leverage modern web technologies, especially WebGL to render embedding points
with the regl API [202]. We also use Web Workers and Streams API to enable the streaming
of large embedding files in parallel with rendering. To enable fast full-time search, we
apply a contextual index scoring algorithm with FlexSearch [203]. We use D3 [180] for
other visualizations and scikit-learn [204] for KDE. To ensure that our tool can be easily
incorporated into users’ current workflows [205], we apply NOVA [206] to make WIZMAP

available within computational notebooks. Users can also share their embedding maps with
collaborators through unique URLs. We provide detailed tutorials to help users use our
tool with their embeddings. We have open-sourced our implementation to support future
research and development of embedding exploration tools.

4.4 Usage Scenarios

We present two hypothetical scenarios, each with real embedding data, to demonstrate how
WIZMAP can help ML researchers and domain experts easily explore embeddings and gain
a better understanding of ML model behaviors and dataset patterns.

4.4.1 Exploring ACL Research Topic Trends

Helen, a science historian, is interested in exploring the evolution of computational linguistic
and natural language processing (NLP) research since its inception. She downloads the
Bibtex files of all papers indexed in ACL Anthology [207]. and extracts the paper title
and abstract from 63k papers that have abstracts available. Then, Helen applies MPNet,
a state-of-the-art embedding model [208], to transform the concatenation of each paper’s
title and abstract into a 768-dimensional embedding vector. She then trains a UMAP model
to project extracted embeddings into a 2D space. She tunes the UMAP’s hyperparameter
n neighbors to ensure projected points are spread out [209].

Helen uses a Python function provided by WIZMAP to generate three JSON files
containing embedding summaries (§ 4.2), the KDE distributions (Fig. 4.3.1), and the
original data in a streamable format [210]. Helen configures the function to use the dataset’s
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year feature as the embedding’s time—the function computes the KDE distribution of
embeddings for each year slice. She provides the files to WIZMAP and sees a visualization
of all ACL abstract embeddings (Fig. 4.4A).

Embedding Exploration. In the Map View, Helen explores embeddings with zoom and
pan. She also uses the Search Panel to find papers with specific keywords, such as “dialogue”,
and Helen is pleased to see all related papers are grouped in a cluster (Fig. 4.2B). With the
help of multi-resolution embedding summaries, Helen quickly gains an understanding of the
structure of her embedding space. For example, she finds that the top right cluster features
translation papers while the lower clusters feature summarization and medical NLP.

Embedding Evolution. To examine how ACL research topics change over time, Helen
clicks the play button clicking the play button in the Control Panel to animate the visualiza-
tions. The Map View shows embeddings of papers published in each year from 1980 to 2022
in purple, while the distribution of all papers is shown as a blue background (Fig. 4.5). As
Helen observes the animation, she identifies several interesting trends. For example, she
observes a decline in the popularity of grammar research, while question-answering has
become increasingly popular. She also notes the emergence of some small clusters in recent
years, featuring relatively new topics, such as sarcasm, humor, and hate speech. Satisfied
with the findings using WIZMAP, Helen decides to write an essay on the trend of NLP
research over four decades.

4.4.2 Investigating Text-to-Image Model Usage

Bob, an ML researcher, works on improving text-to-image generative models. Recent ad-
vancements in diffusion models, such as Stable Diffusion [211], have attracted an increasing
number of users to generate photorealistic images by writing text prompts. To understand
these models’ behaviors and identify potential weaknesses for improvement, Bob decides to
study how users use these models in the wild by analyzing DiffusionDB, a dataset containing
14 million images generated by Stable Diffusion with 1.8 million unique text prompts [212].

Bob’s analysis goal is to study the relationship between the text prompts and their
generated images. Thus, he chooses to use CLIP [27] to encode both prompts and images
into a 768-dimensional multimodal embedding before projecting them to a 2D space with
UMAP. He uses prompts to generate embedding summaries for the CLIP space. After
creating all JSON files, WIZMAP visualizes all 3.6 million embeddings (Fig. 4.6).

Embedding Exploration. Bob starts by hiding image embeddings and scatter plots,
focusing on the global structure of embeddings with the contour plot and embedding sum-
maries. He discovers two dominant prompt categories: art-related prompts and photography-
related prompts. Two categories appear far from each other, which is not surprising as they
are expected to have distinct semantic representations. Bob notices two smaller clusters
within the photography region, prompting him to zoom in and turn on the scatter plot to
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Figure 4.6: WIZMAP enables users to compare multiple embeddings by visualization superposition.
For instance, comparing the CLIP embeddings of 1.8 million Stable Diffusion prompts and 1.8
million generated images reveals key differences between two distributions.

further investigate these local regions (Fig. 4.1). After hovering over a few points, he realizes
one cluster is mostly about non-human objects while the other is about celebrities.

Embedding Comparison. To investigate the relationship between text prompts and
their generated images, Bob clicks a button in the Control Panel to superimpose the contour
and scatter plot of image embeddings in red onto the text embedding visualizations in
blue (Fig. 4.6). Bob quickly identifies areas where two distributions overlap and differ.
He notes that the “movie” cluster in the text embeddings has a lower density in the image
embeddings, whereas a high-density “art portrait” cluster emerges in image embeddings.
Bob hypothesizes that Stable Diffusion may have limited capability to generate photorealistic
human faces [213]. After exploring embedding with WIZMAP, Bob is pleased with his
findings, and he will apply his insights to improve the curation of his training data.

4.5 Conclusion

WIZMAP integrates a novel quadtree-based embedding summarization technique that en-
ables users to easily explore and interpret large embeddings across different levels of granu-
larity. Our usage scenarios showcase our tool’s potential for providing ML researchers and
domain experts with a holistic view of their embeddings. Future researchers can use WIZ-
MAP as a research instrument to conduct observational user studies to test how practitioners
interpret embedding data, study more robust methods for embedding summarization [214],
and integrate more effective embedding comparison techniques [200].
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CHAPTER 5
DIFFUSIONDB: EXPLAIN AI USAGE TO RESEARCHERS AND

POLICYMAKERS

Recent breakthroughs in large text-to-image generative models (e.g., Stable Diffusion,
DALL-E, and Midjourney) and easy access to these models have attracted millions of
users to use them to create award-winning artworks, synthetic radiology images, and even
hyper-realistic videos. There are growing concerns from researchers and policymakers about
the potential misuse of these models, such as generating misinformation and scams [215].
However, as these models possess a wide range of capabilities and are relatively new, it is
difficult for researchers and policymakers to assess their impacts and potential harms. To
help researchers and policymakers easily investigate the real usage of large generative models
and assess their impacts, we present DIFFUSIONDB, the first large-scale usage log dataset of
large text-to-image generative models. DIFFUSIONDB contains 14 million images generated
by Stable Diffusion using 1.8 million unique prompts and hyperparameters specified by
real users (Fig. 5.2). We release DIFFUSIONDB with a CC0 1.0 license, allowing anyone
to flexibly share and adapt the dataset for their use. Finally, we open source our code that
collects, processes, and analyzes the images and prompts.

5.1 Introduction

Recent diffusion models have gained immense popularity by enabling high-quality and
controllable image generation based on text prompts written in natural language [211, 216,
217]. Since the release of these models, people from different domains have quickly applied
them to create award-winning artworks [218], synthetic radiology images [219], and even

Figure 5.1: DIFFUSIONDB is the first large-scale dataset featuring 6.5TB data including 1.8 million
unique Stable Diffusion prompts and 14 million generated images with accompanying hyperparam-
eters. It provides exciting research opportunities in prompt engineering, deepfake detection, and
understanding large generative models.

47



Figure 5.2: DIFFUSIONDB contains 14 million Stable Diffusion images, 1.8 million unique text
prompts, and all model hyperparameters. Each image also has a unique filename, a hash of its
creator’s identifier, a creation timestamp, and an NSFW score computed by state-of-the-art models.

hyper-realistic videos [220].
However, generating images with desired details is difficult, as it requires users to write

proper prompts specifying the exact expected results. Developing such prompts requires
trial and error, and can often feel random and unprincipled [50]. Willison et al. analogize
writing prompts to wizards learning “magical spells”: users do not understand why some
prompts work, but they will add these prompts to their “spell book.” For example, to
generate highly-detailed images, it has become a common practice to add special keywords
such as “trending on artstation” and “unreal engine” in the prompt.

Prompt engineering has become a field of study in the context of text-to-text generation,
where researchers systematically investigate how to construct prompts to effectively solve
different downstream tasks [222, 223]. As large text-to-image models are relatively new,
there is a pressing need to understand how these models react to prompts, how to write
effective prompts, and how to design tools to help users generate images [50]. Our work
helps researchers tackle these critical challenges, through three major contributions:

• DIFFUSIONDB (Fig. 5.1), the first large-scale prompt dataset totaling 6.5TB, con-
taining 14 million images generated by Stable Diffusion [211] using 1.8 million unique
prompts and hyperparameters specified by real users. We construct this dataset by col-
lecting images shared on the Stable Diffusion public Discord server (§ 5.2). We release
DIFFUSIONDB with a CC0 1.0 license, allowing users to flexibly share and adapt the
dataset for their use. In addition, we open-source our code1 that collects, processes, and
analyzes the images and prompts.

• Revealing prompt patterns and model errors. The unprecedented scale of DIFFU-
SIONDB paves the path for researchers to systematically investigate diverse prompts
and associated images that were previously not possible. By characterizing prompts
and images, we discover common prompt patterns and find different distributions of the
semantic representations of prompts and images. Our error analysis highlights particular
hyperparameters and prompt styles can lead to model errors. Finally, we provide evidence

1Code: https://github.com/poloclub/diffusiondb
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of image generative models being used for potentially harmful purposes such as generating
misinformation and nonconsensual pornography (§ 5.3).

• Highlighting new research directions. As the first-of-its-kind text-to-image prompt
dataset, DIFFUSIONDB opens up unique opportunities for researchers from natural lan-
guage processing (NLP), computer vision, and human-computer interaction (HCI) com-
munities. The scale and diversity of this human-actuated dataset will provide new research
opportunities in better tooling for prompt engineering, explaining large generative models,
and detecting deepfakes (§ 5.4).

We believe DIFFUSIONDB will serve as an important resource to study the roles of prompts
in text-to-image generation and design next-generation human-AI interaction tools.

5.2 Constructing DIFFUSIONDB

We construct DIFFUSIONDB (Fig. 5.2) by scraping user-generated images from the official
Stable Diffusion Discord server. We choose Stable Diffusion as it is currently the only
open-source large text-to-image generative model, and all generated images have a CC0
1.0 license that allows uses for any purpose [224]. We choose the official public Discord
server as it has strict rules against generating illegal, hateful, or NSFW (not suitable for
work, such as sexual and violent content) images, and it prohibits sharing prompts with
personal information [225]. Our construction process includes collecting images (§ 5.2.1),
linking them to prompts and hyperparameters (§ 5.2.2), applying NSFW detectors (§ 5.2.3),
creating a flexible file structure (§ 5.2.4), and distributing the dataset (§ 5.2.5). We discuss
DIFFUSIONDB’s limitations in § 5.5.

5.2.1 Collecting User Generated Images

We download chat messages from the Stable Diffusion Discord channels with Discord-
ChatExporter [226], saving them as HTML files. We focus on channels where users can
command a bot to run Stable Diffusion Version 1 to generate images by typing a prompt,
hyperparameters, and the number of images. The bot then replies with the generated images
and used random seeds.

5.2.2 Extracting Image Metadata

We use Beautiful Soup [227] to parse HTML files, mapping generated images with their
prompts, hyperparameters, seeds, timestamps, and the requester’s usernames. Some images
are collages, where the bot combines n generated images as a grid (e.g., a 3×3 grid of n = 9

images); these images have the same prompt and hyperparameters but different seeds. We
use Pillow [228] to split a collage into n images and assign them with the correct metadata
and unique filenames. We compress all images using lossless WebP [229].
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Figure 5.3: To help researchers filter out potentially unsafe data in DIFFUSIONDB, we apply NSFW
detectors to predict the probability that an image-prompt pair contains NSFW content. For images, a
score of 2.0 indicates the image has been blurred by Stable Diffusion.

5.2.3 Identifying NSFW Content

The Stable Diffusion Discord server prohibits generating NSFW images [225]. Also, Stable
Diffusion has a built-in NSFW filter that automatically blurs generated images if it detects
NSFW content. However, we find DIFFUSIONDB still includes NSFW images that were
not detected by the built-in filter or removed by server moderators. To help researchers filter
these images, we apply state-of-the-art NSFW classifiers to compute NSFW scores for each
prompt and image. Researchers can determine a suitable threshold to filter out potentially
unsafe data for their tasks.

NSFW Prompts. We use a pre-trained multilingual toxicity prediction model to detect
unsafe prompts [230]. This model outputs the probabilities of a sentence being toxic, ob-
scene, threat, insult, identity attack, and sexually explicit. We compute the text NSFW score
by taking the maximum of the probabilities of being toxic and sexually explicit (Fig. 5.3 Top).

NSFW Images. We use a pre-trained EfficientNet classifier to detect images with sexual
content [231]. This model predicts the probabilities of five image types: drawing, hentai,
neutral, sexual, or porn. We compute the image NSFW score by summing the probabilities
of hentai, sexual, and porn. We use a Laplacian convolution kernel with a threshold of 10 to
detect images that have already been blurred by Stable Diffusion and assign them a score of
2.0 (Fig. 5.3 Bottom). As Stable Diffusion’s blur effect is strong, our blurred image detector
has high precision and recall (both 100% on 50k randomly sampled images).

NSFW Detector Accuracy. To access the accuracy of these two pre-trained state-of-
the-art NSFW detectors, we randomly sample 5k images and 2k prompt texts and manually
annotate them with two binary NSFW labels (one for image and one for prompt) and analyze
the results. As the percentage of samples predicted as NSFW (score > 0.5) is small, we
up-sample positive samples for annotation, where we have an equal number of positive and
negative examples in our annotation sample. After annotation, we compute the precisions
and recalls. Because we have up-sampled positive predictions, we adjust the recalls by
multiplying false negatives by a scalar to adjust the sampling bias. The up-sampling does not
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affect precisions. Finally, the precisions, recalls and adjusted recalls are 0.3604, 0.9565,
and 0.6661 for the prompt NSFW detector, and 0.315, 0.9722, and 0.3037 for the image
NSFW detector. Our results suggest two detectors are progressive classifiers. The lower
adjusted recall of the prompt NSFW detector can be attributed to several potential factors,
including the use of a fixed binary threshold and the potential discrepancy in the definition
of NSFW prompts between the detector and our annotation process.

5.2.4 Organizing DIFFUSIONDB

We organize DIFFUSIONDB using a flexible file structure. We first give each image a unique
filename using Universally Unique Identifier (UUID, Version 4) [232]. Then, we organize
images into 14,000 sub-folders—each includes 1,000 images. Each sub-folder also includes
a JSON file that contains 1,000 key-value pairs mapping an image name to its metadata.
An example of this image-prompt pair can be seen in Fig. 5.2. This modular file structure
enables researchers to flexibly use a subset of DIFFUSIONDB.

We create a metadata table in Apache Parquet format [233] with 13 columns: unique
image name, image path, prompt, seed, CFG scale, sampler, width, height, username
hash, timestamp, image NSFW score, and prompt NSFW score. We store the table in a
column-based format for efficient querying of individual columns.

5.2.5 Distributing DIFFUSIONDB

We distribute DIFFUSIONDB by bundling each image sub-folder as a Zip file. We collect
Discord usernames of image creators (§ 5.2.2), but only include their SHA256 hashes
in the distribution—as some prompts may include sensitive information, and explicitly
linking them to their creators can cause harm. We host our dataset on a publicly accessible
repository2 under a CC0 1.0 license. We provide scripts that allow users to download and
load DIFFUSIONDB by writing two lines of code. We discuss the limitations in § 5.5. To
mitigate the potential harms, we provide a form for people to report harmful content for
removal. Image creators can also use this form to remove their images.

5.3 Data Analysis

To gain a comprehensive understanding of the dataset, we analyze it from different per-
spectives. We examine prompt length (§ 5.3.1), language (§ 5.3.2), characteristics of both
prompts (§ 5.3.3) and images (§ 5.3.4). We conduct an error analysis on misaligned prompt-
image pairs (§ 5.3.5) and provide empirical evidence of potentially harmful uses of image
generative models (§ 5.3.6).

2Public dataset repository: https://huggingface.co/datasets/poloclub/diffusiondb
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Figure 5.4: The distribution of token counts for all 1.8 million unique prompts in DIFFUSIONDB. It
is worth noting that Stable Diffusion truncates prompts at 75 tokens.

5.3.1 Prompt Length

We collect prompts from Discord, where users can submit one prompt to generate multiple
images and experiment with different hyperparameters. Our dataset contains 1, 819, 808
unique prompts. We tokenize prompts using the same tokenizer as used in Stable Diffu-
sion [234]. This tokenizer truncates tokenized prompts at 75 tokens, excluding special
tokens <|startoftext|> and <|endoftext|>. We measure the length of prompts by their
tokenized length. The prompt length distribution (Fig. 5.4) indicates that shorter prompts
(e.g., around 6 to 12 tokens) are the most popular. The spike at 75 suggests many users
submitted prompts longer than the model’s limit, highlighting the need for user interfaces
guiding users to write prompts within the token limit.

5.3.2 Prompt Language

We use a pre-trained language detector [235] to identify the languages used in prompts.
98.3% of the unique prompts in our dataset are written in English. However, we also find
a large number of non-English languages, with the top four being German (5.2k unique
prompts), French (4.6k), Italian (3.2k), and Spanish (3k). The language detector identifies
34 languages with at least 100 unique prompts in total. Stable Diffusion is trained on
LAION-2B(en) [231] that primarily includes images with English descriptions, thus our
findings suggest that expanding the training data’s language coverage to improve the user
experience for non-English communities.

5.3.3 Characterizing Prompts

In this section, we explore the characteristics of prompts in DIFFUSIONDB. We examine
the syntactic (§ 5.3.3.1) and semantic (§ 5.3.3.2) features of prompt text via interactive
data visualizations. Lastly, We discuss the implications of our findings and suggest future
research directions.
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Figure 5.5: We identify and group popular phrases in prompts through named entity recognition
and dependency parsing. Our interactive circle-packing visualization highlights the distribution
and hierarchy of these phrases. (A) The Overview visualizes each phrase as a circle, with its size
representing the phrase’s frequency. In this example, a viewer clicks a circle to zoom into the
“painting” phrase. (B1) The Detail View shows all noun phrases that use “painting” as their root. (B2)
Similarly, it shows all phrases that include “oil painting” when the viewer zooms into “oil painting.”

5.3.3.1 Prompt Syntactic Features

To characterize the composition of prompts, we parse phrases from all 1.8M unique
prompts. We split each prompt by commas and then extract named entities (NE) and noun
phrases (NP) from each separated component using use Spacy [236]. If there is no noun
phrase in a comma-separated component, we extract the whole component (C) as a phrase.
We keep track of each NP’s root to create a hierarchy of noun phrases.

For example, for the prompt “draw baby yoda in a loading screen for grand

theft auto 5, highly detailed, digital art, concept art,” we extract six phrases:
“baby yoda” (NE), “a loading screen” (NP with root “screen”), “grand theft auto

5” (NE), “highly detailed” (C), “digital art’ (NP with root “art”), and “concept
art” (NP with root “art”). We group “digital art” and “concept art” into the same
hierarchy as they share the same NP root “art.”

Visualizing Prompt Phrases. We create an interactive circle packing visualization3

3Phrase visualization: https://poloclub.github.io/diffusiondb/explorer#phrase
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Figure 5.6: An interactive plot of 1.8M prompts’ CLIP embeddings, created with UMAP and kernel
density estimation. Text labels show the top keywords of prompts in a grid tile. It reveals popular
prompt topics.

to explore the distribution and relationships between different phrases (Fig. 5.5). Circle
packing [237] is a technique to visualize hierarchical data, and each phrase is represented
as a circle whose size encodes the phrase’s frequency in the dataset. We position sibling
noun phrases (e.g., phrases sharing the same NP root) inside their parent phrase’s circle
through a front-chain packing algorithm [237]. Viewers can hover over a circle to see the
corresponding phrase and its frequency. Viewers can click a circle (Fig. 5.5A) to zoom into
that sub-tree to see more details about a phrase (Fig. 5.5-B1) or a sub-phrase (Fig. 5.5-B2).

Insights and implications. Our interactive visualization reveals that key phrases such
as “highly detailed,” “intricate,” and “greg rutkowski” are commonly used in
prompts (Fig. 5.5A). The hierarchical visualization also surfaces popular image styles
specified by users, such“digital painting,” “oil painting,” and “portrait painting”
for painting styles (Fig. 5.5-B1) and “studio lighting,” “volumetric lighting”, and
“atmospheric lighting” for lighting. These phrases can be unfamiliar to Stable Diffusion
users, especially beginners, which highlights the importance of helping users develop
prompting vocabularies. Researchers can leverage DIFFUSIONDB and our visualization
to design tutorials and user interfaces that integrate exemplar prompts to guide users in
describing their desired images.

5.3.3.2 Prompt Semantic Features

In addition to analyzing the syntactic characteristics of prompts, we also analyze their
semantic features. We use a pre-trained CLIP model [27] to extract semantic features [216].
We use a frozen CLIP ViT-L/14 text encoder (the same model used in Stable Diffusion) to
convert prompts into 768-dimension vectors.

Visualizing Prompt Embeddings.
To study the distribution of prompts in high-dimensional space, we use UMAP [30] to

project 768-dimensional vectors into 2-D vectors for easy visualization. UMAP is a popular
dimensionality reduction technique that is better at preserving the global structure of data
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Figure 5.7: CLIP embeddings of 2M randomly selected images, with text labels being keywords of
prompts in the grid tiles. It shows images have a different embedding distribution from prompts.

and more scalable to large datasets compared to t-SNE [31] and PCA [238]. We use grid
search to fine-tune hyperparameters n neighbors (60) and min dist (0.1) so that prompts
are more spread out in a 2-D space. We develop an interactive visualization tool4 to explore
prompts’ semantic embeddings (Fig. 5.6). We use Kernel Density Estimation (KDE) [198]
with a standard multivariate Gaussian kernel and Silverman bandwidth [199] to estimate the
distribution of prompts’ UMAP representations. Then, we visualize the estimated distribu-
tion as a contour plot. To summarize prompts that are in the same region, we create four grids
with varying granularity and pre-compute keywords for each grid tile, by treating all prompts
in the tile as a document and selecting the top 4 keywords with the highest TF-IDF scores.

Interactions. Our visualization shows keywords of tiles that are close to high-density
regions and prompt clusters by default. Viewers can hover over a tile to see its keywords,
pan and zoom in to see more details of specific regions, and click a button to display each
prompt as a small dot that viewers can hover over to read its prompt text.

Insights and implications. Our semantic embedding visualization (Fig. 5.6) highlights
two popular prompt categories: art-related prompts (left in the plot) and photography-related
prompts (dark blue regions on the right). These two groups appear distant from each other in
the UMAP space, suggesting that the prompts for art and photography typically have distinct
semantic representations. Interestingly, photography prompts appear to contain two clusters:
one for non-human objects (top right) and another for celebrities (bottom right). Small
prompt clusters outside the central area often feature artist names. Our findings suggest that
future researchers can leverage the prompt usage distribution to fine-tune generative models
to tailor to specific popular prompt categories.

5.3.4 Characterizing Images

We visualize5 the CLIP embedding distribution of 2 million unique image instances randomly
sampled from DIFFUSIONDB (Fig. 5.7) by defining the unique key as the combination of

4Prompt embedding visualization: https://poloclub.github.io/diffusiondb/explorer/#prompt-embedding
5Image embedding visualization: https://poloclub.github.io/diffusiondb/explorer/#image-embedding

55

https://poloclub.github.io/diffusiondb/explorer/#prompt-embedding
https://poloclub.github.io/diffusiondb/explorer/#image-embedding


Figure 5.8: Example generated image that is semantically different from its prompt.

the image’s prompt and hyperparameters CFG scale, step, size, and seed. We use the
UMAP model that was previously trained on the prompt embeddings to project the image
embeddings into the same 2-D space. Finally, we apply the same method we used for our
prompt embedding visualization (§ 5.3.3.2) to generate a contour plot and grid label overlays.

Insights and implications. Our image embedding visualization reveals that generated
images have a different distribution from their prompts in the CLIP embedding space. For
example, the “movie” cluster in the prompt embedding has been replaced by the “portrait”
cluster in the image embedding. This suggests the semantic representations of prompts and
their generated images may not be perfectly aligned. One hypothesis is that large image
generative models face limitations when generating photorealistic human faces [213], and
therefore some images generated with movie-related prompts appear to be closer to art and
portrait regions in the embedding space.

5.3.5 Stable Diffusion Error Analysis

We leverage DIFFUSIONDB to discover Stable Diffusion generation failure cases and
examine potential causes. To surface poor image generations, we compute CLIP embeddings
for all prompts and images in DIFFUSIONDB. We then select prompt-image pairs with a
large cosine distance (d) between their embeddings. The cosine distances have a normal
distribution (N (0.7123, 0.04132) ). In this analysis, we focus on 13,411 “bad” prompt-
image pairs (1) with a distance that is larger than 4 standard deviations from the mean and
(2) the image was not blurred by Stable Diffusion (§ 5.2.3).

Impacts of hyperparameters. We conduct a logistic regression test to analyze the
relationship between Stable Diffusion hyperparameter values (e.g., CFG scale, step, width,
and height) and the likelihood of generating an image that is semantically different from
its prompt. The results reveal that all four hyperparameters are negatively correlated with
the likelihood of generating a bad image. The correlation is statistically significant with a
p-value of less than 0.0001 for all four variables. Furthermore, we find the distribution of
selected sampler options when generating bad images is significantly different from the
overall distribution (X2 = 40873.11, p < 0.0001).

CFG scale controls how much the generated image looks like the prompt. We find some
users specify negative CFG scales that make images look different from their prompts
(large cosine distance d). In the example shown in Fig. 5.8, a user generates an image using
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Figure 5.9: Example generated image that is semantically different from its prompt.

Figure 5.10: Example generated image that is semantically different from its prompt.

a prompt about “superman” with all default hyperparameters values, except for setting CFG

scale to -1. This results in an image featuring a bowl of soup instead of “superman”.
A small step could also generate under-developed images that look different from the

specified prompts. As demonstrated in the example in Fig. 5.9, a user generates an image
about “plague doctor” with all default hyperparameter values, except for setting step to
2, which leads to a blurry image.

Stable Diffusion struggles with generating images with a small size or large aspect
ratios. The dissimilar image shown in Fig. 5.10 is generated with default hyperparameters
except for a size of (64,512).

Impacts of prompts. Despite controlling all hyperparameters to be close to default
values, we still find 1.1k unique bad image-prompt pairs. Most of these instances have
non-English prompts, very short prompts, or prompts consisting primarily emojis (see
Fig. 5.11). The token lengths of these instances are significantly lower than the overall token
length (one-tailed t = −23.7203, p < 0.0001). The English prompt frequency among these
instances is also significantly lower than the overall frequency (X2 = 1024.56, p < 0.0001).
Interestingly, we also find that Stable Diffusion sometimes generates unexpected images
even when prompts are meaningful English sentences. Future researchers can use our error
analysis and failure cases to check potentially mislabeled training data.

Implications. Our study reveals Stable Diffusion can make mistakes when generating
images with certain hyperparameter values or prompt styles. Negative CFG scales, small
steps, or small sizes contributes to generating images dissimilar to prompts. Short and

Figure 5.11: Example generated image that is semantically different from its prompt.
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non-English prompts can also lead to errors. To improve the quality of generative models,
researchers can expand the training data to cover these edge cases. There are opportunities
for researchers to design user interfaces that can help users understand the impact of different
hyperparameters and guide them in choosing values that fit their specific use cases.

5.3.6 Potentially Harmful Uses

To identify potentially malicious uses of Stable Diffusion, we use named entity recognition
to analyze prompts. We find that many prompts include names of influential politicians, such
as over 65k images generated with a prompt including “Donald Trump” and over 48k images
with “Joe Biden.” Some prompts portray these politicians in negative lights, ranging from
depicting them “as Gollum with hair” to “arrested in handcuffs.” Additionally, we
find female celebrities are frequently used in prompts, with a high frequency after artists and
influential politicians. Some of these prompts are presented in a sexual context that could be
considered nonconsensual pornography.

Through keyword search, we discover prompts generating misinformation that could
cause harm. For example, the prompt ”scientists putting microchips into a

vaccine” may harm public trust in medical institutions by potentially validating conspiracy
theories. Similarly, the prompt ”Russian soldiers in gas masks found the last

surviving ukrainian after a nuclear war to liberate ukraine” depicts false
images of the Russo-Ukrainian War and could lead to new forms of propaganda. Our
findings highlight the crucial need for further research on the broader impacts of large
generative models and ways to regulate and mitigate their harms.

5.4 Enabling New Research Directions

The unprecedented scale and diversity of DIFFUSIONDB bring new exciting research
opportunities to help users generate images more effectively and efficiently, and enable
researchers to improve, explain, and safeguard generative models.

Prompt Autocomplete. With DIFFUSIONDB, researchers can develop an autocomplete
system to help users construct prompts. For example, one can use the prompt corpus to train
an n-gram model to predict likely words following a prompt part. Alternatively, researchers
can use semantic autocomplete [239] by categorizing prompt keywords into ontological
categories such as subject, style, quality, repetition, and magic terms [49]. This allows the
system to suggest related keywords from unspecified categories, for example suggesting
style keyword “depth of field” and a magic keyword “award-winning” to improve
the quality of generated images. Additionally, researchers can also use DIFFUSIONDB to
study prompt auto-replace by distilling effective prompt patterns and creating a “translation”
model that replaces weaker prompt keywords with more effective ones.
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Generation through Search. As DIFFUSIONDB contains 14 million images, this
dataset might have already included images with a user’s desired effects. Thus, a user can
quickly search images in DIFFUSIONDB instead of running Stable Diffusion, which can
be slow and costly. Lexica [51], an AI start-up, provides such a search engine, where users
can search Stable Diffusion images by natural language or images. Researchers can also
construct a structured index of images and prompts, such as building a semantivisual image
hierarchy of images [240] or a hierarchical topic model of prompts [241], to help users
easily discover and explore images and prompts with similar styles.

Improving Generative Models. With DIFFUSIONDB, a large and diverse collection
of Stable Diffusion usage logs, researchers not only can identify weak points and failure
modes of Stable Diffusion but also gain insights into user preferences. For example, we
demonstrate that researchers can use joint text-image embeddings between prompts and
images to detect generation misalignments (§ 5.3.5). Additionally, DIFFUSIONDB provides
important metadata such as username hash and timestamp for each generated image.
By analyzing these metadata fields, researchers can trace the evolution chain of prompts,
parameters, and images, which offers valuable insights into how users develop mental models
of large generative models and their preferences of generated images. This understanding
can inform future researchers to enhance generative models and design interfaces that
facilitate better image-generation experiences.

Explainable Generation. As generative models have been gaining immense popularity,
there is a call for explainable creativity [242]. Many explanation techniques use input
permutation that computes feature attribution scores by running a model on slightly-modified
input values [243]. DIFFUSIONDB contains 14 million prompt-image pairs including similar
prompts with minor differences, such as “a happy dog” and “a sad dog”, allowing
researchers to investigate how individual keywords affect the generation process.

Deepfake Detection. Breakthroughs in generative models raise concerns about deepfakes—
fake images of real individuals for unethical purposes [244]. DIFFUSIONDB is valuable for
detecting deepfakes, as it contains a large-scale collection of model-generated images and
their metadata. Researchers can use this collection to train ML models to identify synthetic
artifacts and train classifiers that classify synthetic images from real images [245].

5.5 Limitations

We discuss the limitations of our work: inclusion of unsafe content, potential biases, a
limited measure of image quality and generalizability to different generative models.

• Inclusion of unsafe images and prompts. We collect images and their prompts from
the Stable Diffusion Discord server (§ 5.2). The Discord server has rules against users
generating or sharing harmful or NSFW (not suitable for work, such as sexual and violent
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content) images. The Stable Diffusion model used in the server also has an NSFW filter
that blurs the generated images if it detects NSFW content. However, we observe that
DIFFUSIONDB includes some NSFW images that were not detected by the NSFW filter or
removed by the server moderators. To mitigate the potential harm, we compute and share
the likelihood of an image or a prompt containing unsafe content using the state-of-the-art
NSFW detectors (§ 5.2.3). In addition, we provide a Google Form on the DIFFUSIONDB
website where users can report harmful or inappropriate images and prompts. We will
closely monitor this form and remove reported images and prompts from DIFFUSIONDB.

• Potential biases of the data source. The 14 million images in DIFFUSIONDB have
diverse styles and categories. However, Discord can be a biased data source. Our images
come from channels where early users could use a bot to use Stable Diffusion before
release. As these users had started using Stable Diffusion before the model was public, we
hypothesize that they are AI art enthusiasts and are likely to have experience with other
text-to-image generative models. Therefore, the prompting style in DIFFUSIONDB might
not represent novice users. Similarly, the prompts in DIFFUSIONDB might not generalize
to domains that require specific knowledge, such as medical images [219].

• Limited measure of image quality. We use joint text-image CLIP embeddings between
prompts and images to detect generation misalignments (§ 5.3.5). While the CLIP em-
bedding distance can indicate the degree of alignment between the prompts and generated
images, it does not provide a measure of the overall image quality. When constructing
our dataset, we have considered including image properties such as entropy, variance, and
the most common colors to help users gauge image qualities. However, these metrics do
not provide a good measure of the overall image quality as well. To better measure image
quality, future researchers can recruit annotators to rate images in DIFFUSIONDB.

• Generalizability. Previous research has shown a prompt that works well on one generative
model might not give the optimal result when used in other models [213]. Therefore, dif-
ferent models can require users to write different prompts. For example, many Stable Dif-
fusion prompts use commas to separate keywords, while this pattern is less seen in prompts
for DALL-E 2 [216] or Midjourney [246]. Thus, we caution researchers that some findings
from DIFFUSIONDB might not be generalizable to other text-to-image generative models.

5.6 Conclusion

We present DIFFUSIONDB, the first large-scale text-to-image prompt dataset, containing 14
million images with their prompts and hyperparameters collected from the Stable Diffusion
discord server. We release the dataset with a CC0 1.0 license and open source all collection
and analysis code, broadening the public’s access to cutting-edge AI technologies. We dis-
cuss findings on prompt and image patterns. We hope our work will serve as a cornerstone for
the future development of large generative modes and tools that help users use these modes.
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Part II
GUIDE AI WITH HUMAN VALUES

Overview

My research first explains AI to everyone, including AI non-experts, experts, and policymak-
ers (Part I). However, gaining a better understanding of AI is not enough. To harness the
full potential of AI and prevent potential harms of AI technologies, it is more important to
translate our understanding of AI into actions that align AI models’ behaviors with human
knowledge and values.

Many AI users, including physicians and domain experts, are not AI experts. To empower
these diverse stakeholders to exercise their human agency and easily guide AI models, we
explore interactive interfaces that do not require programming. We first describe GAM
CHANGER (Chapter 6), a novel interactive visualization tool that enables AI practitioners
and domain experts to easily and responsibly modify the behaviors of generalized additive
models (GAMs) through model editing. GAMs are a popular model class among the data
science community, being famous for their high intelligibility and accuracy. As modifications
of high-stake models have serious consequences, GAM CHANGER promotes responsible
editing by providing users with continuous feedback about the impacts of their edits. GAM
CHANGER has been deployed in Microsoft and integrated into their interpretability library.
Our tool also supports transparent and reversible model modifications. This chapter is
adapted from work that was published and appeared at KDD 2022 [247].

Chapter 6
Interpretability, Then What? Editing Machine Learning Models to Reflect Human
Knowledge and Values. Zijie J. Wang, Alex Kale, Harsha Nori, Peter Stella, Mark
E. Nunnally, Duen Horng Chau, Mihaela Vorvoreanu, Jennifer Wortman Vaughan,
and Rich Caruana. Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD ’22), 2022.

In addition to upstream stakeholders such as AI practitioners and domain experts,
we also help downstream stakeholders such as those impacted by AI-powered decision-
making systems to exercise their human agency in guiding AI models. To help people
alter unfavorable predictions, we introduce GAM COACH (Chapter 7). Take AI-powered
loan application approval as an example, a recourse suggestion can be “decrease the loan
amount by $800, and you will get a loan approval.” With a novel adaptation of integer linear
programming, GAM COACH enables rejected loan applicants to interactively generate and
customize diverse recourse plans that respect their preferences. An online user study with 48
participants reveals that people prefer customizable recourse plans. This chapter is adapted
from work published and appeared at CHI 2023 [248].
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Chapter 7
GAM COACH: Towards Interactive and User-centered Algorithmic Recourse.
Zijie J. Wang, Jennifer Wortman Vaughan, Rich Caruana, and Duen Horng Chau.
Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems,
2023.
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CHAPTER 6
GAM CHANGER: ALIGN AI MODELS THROUGH MODEL EDITING

Researchers have made great efforts to make AI models interpretable [7, 155]. Interpretabil-
ity reveals AI models can learn dangerous patterns from the data and rely on these patterns
to make predictions, such as healthcare models predicting asthmatic patients have a lower
risk of dying from pneumonia [11]. One explanation is that asthmatic patients receive care
earlier, leading to better outcomes in the training data. However, if we use these flawed
models to make hospital admission decisions, asthmatic patients are likely to miss out on
the care they need. Interpretability helps us identify these dangerous patterns, but how can
we take a step further and use explanations to align models with our knowledge and values?
To help AI practitioners and domain experts improve AI models with model explanations,
we design and develop GAM CHANGER, a novel interactive tool that enables users to fix
problematic behaviors in their AI models through model editing. Physicians have started
to use our tool to investigate and fix pneumonia and sepsis risk prediction models, and an
evaluation with 7 data scientists working in diverse domains highlights that our tool is easy
to use, meets their model editing needs, and fits into their current workflows.

6.1 Introduction

It is crucial to understand how machine learning (ML) models make predictions in high-
stakes settings, such as finance, criminal justice, and healthcare (Fig. 6.1A). Recently,
researchers have made substantial efforts to make ML models interpretable [e.g., 249, 243,
11], but there is not much research focused on how to act on model interpretations. In
practice, data scientists and domain experts often compare model interpretations with their
knowledge [8]. If a model uses expected patterns to make predictions, they feel more confi-
dent to deploy it. Interpretability can also uncover hidden relationships in the data—helping

Figure 6.1: (A) Domain experts such as physicians often hesitate to trust ML models as they
cannot understand how the models make predictions. (B) Interpretability reveals models can learn
potentially harmful patterns. (C) Model editing turns interpretability into action—enabling domain
experts to align model behaviors with their knowledge and values.
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Figure 6.2: GAM CHANGER empowers domain experts and data scientists to easily and responsibly
align model behaviors with their knowledge and values, via direct manipulation of GAM model
weights. Take a healthcare model for example. (A) The GAM Canvas enables physicians to interpolate
the predicted risk of dying from pneumonia to match their clinical knowledge of a gradual risk
increase from age 81 to age 87. (B1) The Metric Panel provides real-time feedback on model
performance. (B2) The Feature Panel helps users identify characteristics of affected samples and
promotes awareness of fairness issues. (B3) The History Panel allows users to compare and revert
changes, as well as document their motivations and editing contexts.

users gain insights into the problems they want to tackle.
Other times, however, ML interpretability reveals that models learn dangerous patterns

from the data and rely on these patterns to make predictions. These patterns might accurately
reflect real phenomena, but leaving them untouched can cause serious harm in deployment.
For example, with interpretability, KDD researchers [11, 250] found healthcare models
predict that having asthma lowers a patient’s risk of dying from pneumonia (Fig. 6.1B).
Researchers suspect this is because asthmatic patients would receive care earlier, leading to
better outcomes in the training data. If we use these flawed models to make hospital admis-
sion decisions, asthmatic patients are likely to miss out on care they need. Interpretability
helps us identify these dangerous patterns, but how can we take a step further and use model
explanations to improve (Fig. 6.1C) ML models?

To answer this question, our research team—consisting of ML and human-computer in-
teraction researchers, physicians, and data scientists—presents GAM CHANGER (Fig. 6.2):
the first interactive system to empower domain experts and data scientists to easily and
responsibly edit the weights of generalized additive models (GAMs) [12, 251, 252], a
state-of-the-art interpretable model [253]. Model editing is already common practice for
regulatory compliance (§ 6.4.2.1). We aim to tackle two critical challenges to make model
editing more accessible and responsible:
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Challenge 1: Enable domain experts to vet and fix models. Editing model weights
to align model behavior with domain knowledge has been discussed in the KDD commu-
nity [11]. It requires the “editors” to have expertise in ML engineering and write code to
adjust specific weights until the model behaves as expected. However, domain experts who
have less experience in ML engineering, such as physicians and legal experts, play a critical
role in creating trustworthy models [8]. To democratize model editing, we develop easy-
to-use and flexible user interfaces that support a wide range of editing methods—enabling
stakeholders with diverse backgrounds to easily investigate and improve ML models.

Challenge 2: Promote accountable model modifications. Accessible model editing
helps users exercise their human agency but demands caution, as modifications of high-stake
models have serious consequences. For example, if a user only monitors edits’ effects on a
metric like overall accuracy, their edits might have unfavorable effects on underrepresented
groups [254]. To guard against harmful edits, we provide users with continuous feedback
about impacts on different subgroups and feature correlations. We also support transparent
and reversible model modifications.

Contributions & Impacts. GAM CHANGER has already begun to help users improve their
models. Our major contributions include:

• GAM CHANGER, the first interactive system that empowers domain experts and data
scientists to edit GAMs to align model behaviors with their knowledge and values. Through
a participatory and iterative design process with physicians and data scientists, we adapt
easy-to-use direct manipulation [255] interfaces to edit complex ML models. Guarding
against harmful edits is our priority: we employ continuous feedback and reversible actions
to elucidate editing effects and promote accountable edits (§ 6.2).

• Impacts to physicians: GAM CHANGER in action. Physicians have started to use our
tool to vet and fix healthcare ML models. We present two examples where physicians on
our team applied GAM CHANGER to align pneumonia and sepsis risk predictions with
their clinical knowledge. The edited sepsis risk prediction model will be adapted for use
in a large hospital (§ 6.3).

• Impacts to data scientists: beyond healthcare. To investigate how our tool will help
ML practitioners, we further evaluate it via a user study with 7 data scientists in finance,
healthcare, and media. Our study suggests GAM CHANGER is easy to understand, fits into
practitioners’ workflow, and is especially enjoyable to use. We also find model editing via
feature engineering and parameter tuning is a common practice for regulatory compliance.
Reflecting on our study, we derive lessons and future directions for model editing and
interpretability tools (§ 6.4, § 6.5).

• An open-source,1 web-based implementation that broadens people’s access to creating
more accountable ML models and exercising their human agency in a world penetrated

1GAM CHANGER code: https://github.com/interpretml/gam-changer
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by ML systems. We develop GAM CHANGER with modern web technologies such as
WebAssembly.2 Therefore, anyone can access our tool directly in their web browser or
computational notebooks and edit ML models with their own datasets at scale (§ 6.2.3).
For a demo video of GAM CHANGER, visit https://youtu.be/D6whtfInqTc.

We hope our work helps emphasize the importance of human agency in responsible ML re-
search, and inspires future work in human-AI interaction and actionable ML interpretability.

6.2 Novel User Experience

To lower barriers to controlling ML model behavior (Challenge 1), GAM CHANGER (Fig. 6.2)
adapts easy-to-use direct manipulation interface to edit the parameters of GAMs with a
variety of editing tools (§ 6.2.1). To promote responsible edits (Challenge 2), our tool
provides real-time feedback; all edits are reversible, and users can document and compare
their edits (§ 6.2.2). Built with modern web technologies, our tool is accessible (§ 6.2.3).

6.2.1 Intuitive and Flexible Editing

The GAM Canvas (Fig. 6.2A) is the main view of GAM CHANGER, where we visualize
one input feature xj’s contribution to the model’s prediction by plotting its shape function
fj(xj). Users can select a drop-down to transition across features. GAMs usually discretize
continuous variables into finite bins, so that shape functions can easily capture complex
non-linear relationships. Thus, the output of shape functions is a continuous piecewise
constant function, where we use a dot to show the start of each bin and a line to encode
the bin’s constant score (Fig. 6.2A). For categorical features, we represent each bin as a
bar whose height encodes the bin’s score (Fig. 6.3B). Lines and bins are colored by editing
status (e.g., original or edited).

Model direct manipulation. In the GAM Canvas, users can zoom-and-pan to control
their viewpoint in the move mode, or use marquee selection to select a region of the shape
function to edit in the select mode (Fig. 6.2A). Once a region is selected, the Context Toolbar
appears: it affords a variety of editing tools represented as icon buttons. Clicking a button
changes the shape function in the selected region. For example, the monotonicity tool
can transform the selected interval of the shape function into a monotonically increasing
function. Internally, GAM CHANGER fits an isotonic regression [256] weighted by the bin
counts to determine a monotone function with minimal changes. Other editing tools include
interpolating scores of selected bins, dragging to adjust scores, and aligning scores to
the most left or right bin.

GAM Canvas. In the GAM Canvas (Fig. 6.2A), users can inspect and direct manipulate
shape functions. As GAMs support continuous and categorical features, as well as their

2WebAssembly: https://webassembly.org
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Figure 6.3: The GAM Canvas employs different designs to visualize shape functions on different
feature types. We use A line charts for continuous variables, B bar charts for categorical variables,
C heatmaps for interaction effects of two continuous variables, D vertical bar charts for interaction
effects between continuous and categorical variables, and E scatter plots for interaction effect of two
categorical variables. For univariate features, the x-axis encodes the input feature xj , and the y-axis
represents the output of the shape function fj(xj). We also use light-blue bands and error bars to
represent the prediction confidence. For pair-wise interactions, the axes encode two features, and we
use a diverging color scale to represent the contribution scores.

Figure 6.4: The Context Toolbar enables users to edit GAMs with a variety of editing tools. Users can
use the move tool to adjust the contribution scores of selected bins by dragging bins up and down.
Users can apply the interpolate tool to linearly interpolate the scores of an interval of bins from the
start to the end. Alternatively, users can interpolate scores with an arbitrary number of equal bins ,
or by fitting a linear regression . With minimal changes, the monotonicity tool transforms the
selected scores into a monotonically increasing function or a monotonically decreasing function .
With align tools, users can unify the selected scores as the score of the left bin , the right bin , or
the average score weighted by the training sample counts .

two-way interactions, we design unique visualization for each variable type, featuring line
chart, bar chart, heatmaps, and scatter plots (Fig. 6.3). Users can use the feature selection
drop-down to transition across features. To begin, the GAM Canvas shows the feature with
the highest importance score, computed as the weighted average of a feature’s absolute
contribution scores. We re-center the contribution scores by adjusting the intercept constant
β0 (Equation 2.1) such that the mean prediction for each feature has a zero score across the
training data. Thus, a positive score suggests the feature positively affects the prediction
and vice versa. Consider a GAM trained to predict house prices (Fig. 6.3A), if the living
area is larger than 2000 square feet, it increases the predicted house price, while areas lower
than 2000 decrease the predicted value compared with average. We highlight the 0-baseline
as a thick dashed line.
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Figure 6.5: A On a GAM trained to predict house price, a user selects bins representing high-quality
houses in the GAM Canvas. B1 For categorical variables, the Feature Panel shows that selected houses
disproportionally have better exterior and kitchen quality and locate in certain neighborhoods. B2 For
continuous variables, the year built and garage area are also highly correlated with the house quality.

Editing tools. In the GAM Canvas, users can switch between move mode and select
mode by clicking the mode toggle button. In the move mode, users can use zoom-and-pan
to control their view portion and focus on analyzing an interesting region in the GAM
visualization. In the select mode, users can use marquee selection to pick a subset of bins
(or bars for categorical features) to edit. Once a region of the shape function is selected, the
Context Toolbar (Fig. 6.4) appears. In the bottom Status Bar, users can view the number of
samples in the selected region and a description of their last edit. Users can click the check
icon to “commit” (§ 6.2.2) the change if they are satisfied with this edit, or click the cross
icon to discard the change.

Feautre Panel. The Feature Panel (Fig. 6.2-B2, Fig. 6.5) helps users gain an overview
of correlated features as well as their distributions and elucidate potential editing effect
disparities. We develop linking+reordering—a novel technique to identify correlated fea-
tures. Once a user selects an interval of the shape function in the GAM Canvas (Fig. 6.5-A),
we look up affected samples and their associated bins across all features. For each feature,
we compare the bin count frequency in all training data and the frequency in the selected
samples by computing the ℓ2 distance between these two frequency vectors. Then, we plot
two frequency distributions in an overlaid histogram for each feature, and sort all histograms
in descending order of the distance scores (Fig. 6.5-B). The intuition is that if two features
x1 and x2 are independent, then samples selected from an interval in x1 should have a distri-
bution similar to the training data distribution in x2, and vice versa. Therefore, correlated
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features will be on top of the sorted histogram list. Our linking+reordering technique allows
users to interactively and quickly identify local correlations across features, even between
continuous and categorical features. By observing correlated features, users can identify
potential disparities in editing impacts. For example, editing high-quality houses would
disproportionately affect newer houses (Fig. 6.5).

Metric Panel. The Metric Panel (Fig. 6.2-B1) provides real-time and continuous
feedback on the model performance. For a binary classifier, we present a confusion matrix
and use bar plots to encode the model’s accuracy, balanced accuracy, and the Area Under
the Curve (AUC). For a regressor, we report root mean squared error, mean absolute error,
and mean absolute percentage error. We use the same color codes of shape functions in the
GAM Canvas to describe the performance of original model, model from the last edit, and
current model.

Besides monitoring global metrics that are computed on all validation samples, users
can choose a subset of validation samples to compute the metrics by switching the metric
scope. For example, with the Selected Scope, the Metric Panel only computes model metrics
on samples that are in the currently selected region. With the Slice Scope, users can choose
a data slice by selecting a level of a categorical variable, e.g., the female level of the gender

variable. Then, performance metrics in the Metric Panel are computed on the validation
samples that belong to the selected subgroup.

History Panel. GAM CHANGER users can undo and redo their edits by
clicking the buttons in the bottom Status Bar (shown on the right) or using keyboard shortcuts.
Reversible actions promote accountable model editing, as users can easily fix their mistakes.

Inspired by the version control system Git3, the History Panel (Fig. 6.2-B3) tracks each
edit as a commit: a snapshot of the underlying GAM. Each commit has a timestamp, a
unique identifier, and a commit message. Once an edit is committed, we automatically
generate an initial commit message to describe the edit; users can update the message in the
History Panel to further document their editing motivation and context. Once users finish
editing, they can click the Save button in the Status Bar to save the latest GAM along with
all editing history, which can be used for deployment or future continuing editing. Before
saving the model, GAM CHANGER requires users to examine and confirm all edits.

6.2.2 Safe and Responsible Editing

Guarding against harmful edits is our top priority. To begin using GAM CHANGER, users
provide a trained GAM (i.e., model weights) and set of validation samples (a subset of the
training data or separate validation set). The Metric Panel (Fig. 6.2-B1) provides real-time
and continuous feedback on the model’s performance on the validation samples to help
users identify the effects of their edits. During a user’s editing process, our tool efficiently

3Git: https://git-scm.com
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recomputes performance metrics on the edited model. To probe if an edit is equitable across
different subgroups, users can choose which subset of samples to measure performance on:
the Global Scope for all samples, the Selected Scope for samples in the selected region, and
the Slice Scope for samples having a specific categorical value (e.g., females).

Recognize impact disparities. The Feature Panel (Fig. 6.2-B2) helps users gain an
overview of correlated features and elucidates potential disparities in the impact of edits. For
example, it can alert users of the disproportionate impact of edits addressing elder patients on
females as females live longer. We develop linking+reordering—a novel method to identify
correlated features. Once a user selects a region in the GAM Canvas, we look up affected
samples’ associated bins across all features. For each feature, we compute the ℓ2 distance
between the bin count frequency in all training data and the frequency in affected samples.
By observing overlaid histograms sorted in descending order of the distance scores, users can
inspect correlated features of affected samples and identify potential editing effect disparity.

Reversible and documented modifications. To promote safe model editing, GAM
CHANGER allows users to undo and redo any edits. In addition, the History Panel (Fig. 6.2-
B3) tracks all edits and displays each edit in a list. Inspired by the version control system Git,
we save each edit as a commit—a snapshot of the underlying GAM weights. Each commit
has a timestamp, a unique identifier, and a commit message. Therefore, users can easily
explore model evolution by checking out a previous GAM version, discard modifications,
and document edit contexts and motivations in commit messages. Once satisfied with
their edits, a user can save the modified model with edit history for deployment or future
continuing editing. To help users identify editing mistakes and promote accountable edits,
GAM CHANGER requires users to examine and confirm all edits before saving the model.

6.2.3 Scalable, Open-source Implementation

GAM CHANGER is a web-based GAM editor that users can access with any web-browsers
on laptops or tablets, or directly in computational notebooks. Our tool has been integrated
into the popular ML interpretability ecosystem InterpretML [7]: users can easily export
models to edit and load modified models. Using cutting-edge WebAssembly to accelerate in-
browser model inference and isotonic regression fitting, our tool is scalable: all computations
are real-time with up to 5k validation samples in Firefox on a MacBook, and the sample
size is only bounded by the browser’s memory limit. We open source GAM CHANGER so
that future researchers can easily generalize our design to other forms of model editing.

6.3 Impacts to physicians

GAM CHANGER in action. The early prototype [257] of our tool has received overwhelm-
ingly positive feedback in two physician-focused workshops. In addition, physicians have
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Figure 6.6: A A GAM learns a few strange patterns between patients’ temperature and sepsis risk
that need to be fixed. B1 We smooth out the sudden increase of risk around 96◦F, B2 flatten the
risk to reflect a treatment effect, and B3 smooth out risk fluctuations at high temperature.

begun to use our tool to interpret and edit medical models. We share examples in which two
physicians in our research team apply GAM CHANGER to investigate and improve GAMs
for sepsis (§ 6.3.1) and pneumonia (§ 6.3.2) risk predictions, editing the models to reflect
their clinical knowledge and values such as safety. The edited sepsis risk prediction model
will be adapted for use in a large hospital.

6.3.1 Fixing Sepsis Risk Prediction

A physician in our team trained a GAM with boosted-trees to predict if pediatric patients
should receive sepsis treatments. This model exhibited many problematic patterns. In this
section, we share our experience in applying GAM CHANGER to align this model’s behavior
with the physician’s clinical knowledge and values.

The data comes from a large hospital; it includes 26,564 pediatric patients. There are
7 continuous features: age , oxygen saturation , body temperature , systolic and diastolic blood pressure ,
heart rate , and respiratory rate . The blood pressure , heart rate , and respiratory rate are normalized by taking
the difference between the original value and the age-adjusted normal. The other 83 features
are categorical with binary values, each indicating if a keyword—such as “pain,” “fever,”
or “fall”—is present in the chief complaint of patient, a concise statement describing the
symptom, diagnosis, and other reasons for a medical encounter. The target variable is binary:
1 if the patient received a treatment for sepsis and 0 if not. The model yields an AUC score
of 0.865 on the test set (20% of all data). The physician loads GAM CHANGER in their
browser with 5,000 random training samples; they share their computer screen with 3 other
researchers in the team via video-conferencing software. All edits are made by the physician
after discussing with other researchers on the call.

There is a plateau of risk scores from 100–104◦F, with a small, but notable dip from 103–
104◦F. The presence of the plateau itself is physiologically plausible (due to antipyretic treat-
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Figure 6.7: A Contrary to clinical knowledge, a GAM predicts sepsis risk decreases when the respi-
ratory rate decreases (left), and the risk score fluctuates when the rate increases (right). We align the
model behaviors by B1 raising risk scores and B2 removing risk fluctuations with monotonicity .

ments), but the dip is hard to explain and suspicious, perhaps reflecting a treatment effect in
which treatment is delayed outside of the model’s prediction window as physicians evaluate
the child’s response to antipyretics. Because of a concern that this might artificially depress
risk scores and encourage physicians to believe that children in this range are healthier than
they really are, the risk curve in this region is flattened using the align tool (Fig. 6.6-B2).

The observation of many small dips of predicted risk scores around 104–105.5◦F does
not align with physiological knowledge. Therefore, we remove these dips by making the
scores monotonically increasing in this region by fitting an isotonic regression model. The
physician in our team thinks this edit is conservative and safe because it smooths out many
dips in the region that might cause patients to lose necessary care. The physician comments
“Taking out unpredictable behaviors from a model to my mind is deeply safer. If this ends
up being a life and death decision, and we go back, and we look that a kid died because he
didn’t trigger the model by falling into one of those dips, then that is a catastrophe.”

6.3.1.1 Editing the temperature feature.

The GAM Canvas first shows temperature (Fig. 6.6A) since this feature has the highest impor-
tance score, computed as the weighted average of a feature’s absolute contribution scores.
The x-axis ranges from 10 to 120◦F, where the low range is due to data errors. The y-axis
encodes the predicted risk score (log odds) of dying from sepsis, ranging from -0.2 to 1.5.
The shape function has a “U-shape”: the model predicts that patients with temperature lower
and higher than the normal range (97–99◦F) have a higher risk of sepsis. It matches clinical
knowledge as fever (high temperature ) and hypothermia (low temperature caused by cardiovas-
cular collapse) are severe symptoms of sepsis. There is a peak of predicted risk when the
temperature is around 96◦F. However, there is no physiological reason that hypothermia with
a temperature of 96◦F has a higher risk than a temperature of 95◦F. Therefore, we remove the risk
peak at 96◦F by linearly interpolating the risk scores from 95 to 96.5◦F (Fig. 6.6-B1).

72



6.3.1.2 Editing the respiratory rate feature.

The respiratory rate feature measures the difference between the number of breaths taken in
one minute and its age-adjusted normal. The “U-shape” in the GAM Canvas (Fig. 6.7A)
suggests the model predicts that patients with high deviation from the normal respiratory
rate range have a higher risk of sepsis, and higher respiratory rate yields a higher risk score than
lower respiratory rate . This pattern matches the clinical knowledge. Interestingly, the center of
the “U-shape” is around -5 instead of 0. This also makes sense because the “normal range”
of respiratory rate for adults is considered 12–20 times a minute, but healthy adults actually
only take 12–15 breaths per minute. In other words, this left-shifted center indicates the
model has learned a realistic distribution of respiratory rate.

The predicted risk decreases when respiratory rate is below -21, for which there is no
physiological explanation. We decide to remove this counterintuitive risk decrease by
flattening all scores below -21 (Fig. 6.7-B1). After this edit, we notice some fluctuations
on the right side of the “U-shape.” Clinical knowledge suggests sepsis risk should only
increase when respiratory rate increases for rates which are already above normal. To fix the
counterintuitive pattern in the model, we make the risk scores monotonically increasing
for bins between 7 and 40 (Fig. 6.7-B2).

An alternative edit is to linearly interpolate the scores of bins from 7 to 40. However, we
prefer the former edit, because linear interpolation would break the plateau of predicted risk
when respiratory rate is between 8 and 28, which are values that are commonly associated with
children suffering from mild to moderate obstructive lung pathologies such as bronchiolitis
and asthma, neither of which are likely to require treatment for suspected sepsis. Removing
this pattern might obscure a meaningful signal—there are many non-sepsis related reasons
for moderately elevated respiratory rate. Compared to the linear interpolation tool , the
monotone increasing tool is much less intrusive: it makes minimal changes to make the
selected region monotone via isotonic regression.

6.3.1.3 Editing the systolic blood pressure feature.

The feature blood pressure measures the difference between the systolic blood pressure in
millimeters of mercury and its age-adjusted normal. The GAM Canvas (Fig. 6.8A) shows
that the model predicts patients with blood pressure from -25 to -10 to have a significantly
higher risk of sepsis. Interestingly, the predicted risk score decreases when blood pressure

decreases after peaking at -15. The GAM Canvas shows only 19 patients out of 5000
patients with blood pressure below -20, and 118 patients with blood pressure from -20 to -10.
Clinical knowledge suggests that when blood pressure readings move away from the typical
range, both the odds of having a measurement artifact and the risk of sepsis increase. To
create a safer model, we select all the bins below -15 and align their risk score to the
right (Fig. 6.8-B1). Although by doing so, we raise the predicted risk score of all bins below
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Figure 6.8: A Against physicians’ expectations, a GAM predicts that patients with lower blood
pressure have lower sepsis risk (left), and the risk abruptly increases at high blood pressure (right).
To create a safer model, B1 we raise the risk scores , and B1 smooth out the sudden risk increase .

-15 to 0.38, this is a conservative edit as we do not further increase the risk when blood pressure

decreases after -15. Here blood pressure below -20 is most likely an error, and this edit might
increase false-positive predictions on incorrect inputs. However, the physician prefers this
model to predict data errors and outliers as high risk, because it is safer to have a high
false-positive rate than to have a high false-negative rate when predicting sepsis risk. When
editing healthcare models, physicians often consider the tradeoff between false-positive
and false-negative rates, and the sweet spot for the tradeoff varies for different healthcare
models (see § 6.5 for more discussion).

The risk score of sepsis fluctuates when systolic blood pressure is around 60–80. There is no
physiological explanation for this fluctuation, so we smooth it out by linearly interpolating
these scores. Interestingly, there is a sudden increase in the predicted risk score when
blood pressure is higher than 95, where these inputs are most likely errors. Therefore, we decide
not to edit this increase because it is safer to have a high false-positive rate than to have a
high false-negative rate on a sepsis risk prediction model.

6.3.2 Repairing Pneumonia Risk Prediction

KDD researchers [11] have identified problematic patterns in pneumonia risk prediction
models and raised the possibility to fix these patterns via model editing. With GAM
CHANGER, we operationalize this possibility by editing the same model [11] with a physician
in our research team. This GAM is trained to predict a patient’s risk of dying from pneumonia.
The dataset includes 14,199 pneumonia patients; it has 46 features: 19 are continuous and
27 are categorical. The outcome variable is binary: 1 if the patient died of pneumonia and 0

if they survived. The AUC score on the test set (30% of data) is 0.853. One ML researcher
in our team loads GAM CHANGER in their browser with 5,000 random training samples;
they share their computer screen with a physician and 2 other researchers in the team via
video-conferencing software. All edits are made by the ML researcher after discussing with
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Figure 6.9: A Contrary to physicians’ knowledge, a GAM predicts an abrupt increase of risk from
age 86 to 87 (left), and that patients above 100 years old have lower pneumonia risk than patients 20
years younger (right). B1 With the interpolation tool , we smooth out the abrupt increase of risk. B2
We use the align tool to raise the risk score for older patients.

all people in the call.

6.3.2.1 Editing the age feature.

After loading GAM CHANGER, the GAM Canvas (Fig. 6.9A) first displays age , which
has the highest importance score. The x-axis ranges from 18 to 106 years old. The y-axis
encodes the predicted risk score (log odds) of dying from pneumonia. It ranges from a score
of -0.4 for patients in their 20s to 0.5 for patients in their 90s. The model predicts that
younger patients have a lower risk than older patients. However, the risk suddenly plunges
when patients pass 100—leading to a similar risk score as if the patient is 30 years younger!
It might be due to outliers in this age range, especially as this range has a small sample size,
or patients who live this long might have “good genes” to recover from pneumonia.

To identify the true impact of age on pneumonia risk, additional causal experiments and
analysis are needed. Without robust evidence that people over 100 are truly at lower risk,
physicians fear that they would be injuring patients by depriving needy older people of care,
and violating their primary obligation to do no harm. Therefore, physicians would like to
fix this pattern. We apply a conservative remedy by setting the risk of older patients to
be equal to that of those slightly younger (Fig. 6.9-B2).

From the Metric Panel, we notice a drop of accuracy of 0.0004 in the Global Scope,
and the confusion matrix in the Selected Scope shows that this edit causes the model to
misclassify two negative cases as positives out of 28 patients who would be affected by the
edit. To learn more about these patients, we observe the Feature Panel, which shows that
gender is the second most correlated categorical feature with the selected age range. It means
patients who are affected by this edit are disproportionally female—it makes sense because
on average women live longer than men. Seeing the correlated features helps us be aware of
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Figure 6.10: A A GAM predicts having asthma lowers the risk of dying from pneumonia. B We
address this problematic pattern by removing the predictive effect of having asthma .

potential fairness issues during model editing.
Besides the problematic drop of risk for older patients, the risk suddenly rises around

86 years old (Fig. 6.9A). After converting the risk score from log-odds to probability, the
predicted likelihood of dying from pneumonia increases by 4.89% when the age goes from
86 to 87. This model behavior can cause 81–86 year-old patients to miss the care they need.
To create a safer model, we apply the linear interpolation tool in the region from age 81 to
87 to smooth out the sudden increase of pneumonia risk (Fig. 6.9-B1).

6.3.2.2 Editing the asthma feature.

The GAM Canvas (Fig. 6.10A) of the binary feature asthma suggests the model predicts
asthmatic patients to have a lower risk of pneumonia than non-asthmatic patients. It could
be because pneumonia patients with a history of asthma are likely to receive care earlier
and receive more intensive care. However, if we use this model to make hospital admission
decisions, this pattern might cause asthmatic patients to miss necessary care. Therefore, we
remove the predictive effect of having asthma (Fig. 6.10B)—the new model would predict
asthmatic patients to have an average risk. This is a conservative edit as one might argue
asthmatic patients should have higher risk of pneumonia. Our edit is a step in the right
direction, but further experiments are needed to see if we need further adjustments.

6.4 Impacts beyond healthcare

Evaluation with data scientists. We conducted a user study to further evaluate the usability
and usefulness of GAM CHANGER, and also to investigate how data scientists would use
our tool in practice. In the study, we chose a loan default prediction model in a lending
scenario, because there is no specialized knowledge needed to interpret and potentially edit
this model. The authors’ Institutional Review Board (IRB) has approved this study.

6.4.1 Study Design

Participants. The target users of GAM CHANGER are ML practitioners and domain experts
who are familiar with GAM models. Therefore, we recruited 7 data scientists (P1–P7) for this
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study by posting advertisements4 on the online issue board of a popular GAM Library [7].
The participation was voluntary, and we did not collect any personal information. All
participants have developed GAMs for work: three participants use GAMs multiple times
a week (P1, P5, P6), three use them a few times a month (P2, P3, P4), and one uses them
about once a month (P7). Four participants work in finance (P1, P2, P3, P7), two work in
healthcare (P4, P5), and one works in media (P6). Each study lasted about 1 hour, and we
compensated each participant with a $25 Amazon Gift card.

Procedure. We conducted the study with participants one-on-one through video-
conferencing software. With permission from all participants, we recorded the video
conference for subsequent analysis. After signing a consent form and a background ques-
tionnaire (e.g., familiarity with GAMs), each participant was given an 8-minute tutorial
about GAM CHANGER. Participants then were pointed to a website consisting of GAM
CHANGER with a model trained on the LendingClub dataset [258] to predict if a loan appli-
cant can pay off the loan: the outcome variable is 1 if they can and 0 otherwise. Participants
were given a list of recommended tasks to look for surprising patterns, edit 3 continuous
features and 2 categorical features with different editing tools, experiment with different
views, and freely explore the tool. Participants were told that the list was a guide to help
them try out all features in the tool, and they were encouraged to freely edit the model
as seen fit. Participants were asked to think aloud and share their computer screens with
us. Each session ended with a usability survey and a semi-structured interview that asked
participants about their experience of using GAM CHANGER and if this tool could fit their
workflow and help them improve models in practice.

6.4.2 Benefits to Data Scientists

Below we summarize key findings from our observations and participants’ feedback.

6.4.2.1 Meet the pressing needs for model editing

Through analyzing interviews and participants’ verbalization of thoughts during the explo-
ration task, we find there are critical needs for model editing in practice, and ML practitioners
have already been editing their models with different methods. All participants have ob-
served counterintuitive patterns when developing models in their work. For example, P6
recalled their GAM model, “Some weights are negative, and I know by definition this cannot
happen because [... of the nature of that feature].” P7 commented “[Strange patterns]
happen a lot, mostly the direction of a certain variable. We expect the score to be increasing;
however, the model shows something opposite.”

Many participants were required to fix these strange patterns. P3 and P7 needed to
remove counterintuitive patterns because of the Adverse Action Notice Requirement, a

4Participant recruitment: https://github.com/interpretml/interpret/issues/283
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Figure 6.11: Average ratings from 7 participants for GAM CHANGER’s usability and usefulness. (A)
All participants enjoyed using the tool; they found it highly usable and it meets their editing needs.
(B) All features, especially enforcing monotonicity and removing effects, were rated favorably.

policy requiring lenders to provide explanations to loan applicants. If there are strange
patterns, the model explanations sometimes will not make sense to loan applicants. P7
explained, “Basically you want to make the model easier to explain in adverse action
calls.” Adverse action calls refer to situations when applicants dial in and demand real-time
model explanations. On the other hand, P5 and P6 needed to edit their models on some
well-understood features to align model behaviors with the expectations of knowledgeable
stakeholders—physicians and business partners, respectively.

Improve and unify current editing approaches. Most participants reported using
feature engineering to fix counterintuitive patterns in their own day-to-day work. For ex-
ample, after discussing with domain experts, P5 removed features where they thought the
shape functions were wrong or did not make sense. In P7’s case, a legal compliance team
would decide which features to include and exclude after inspecting the model behaviors.
P2 trained multiple models with different hyper-parameters and then chose models that
not only had high accuracy but also learned expected trends. P1 had set up a sophisticated
post-processing pipeline that would automatically smooth out shape functions, enforce
monotonicity, and remove predictive effects on missing values. With interactivity and
flexible tools, GAM CHANGER provided participants with direct control of their model
behaviors and unify current editing approaches.

6.4.2.2 Usable and useful

The study survey included a series of 7-point Likert-scale questions regarding the usability
and usefulness of GAM CHANGER (Fig. 6.11A). The results suggest that the tool is
easy to use (average 6.14), easy to understand (average 5.86), and especially enjoyable
to use (average 7.00—all participants gave the highest rating). Most participants would
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like to use GAM CHANGER in their work to edit models. For example, P6 commented
“I have the dire hope that it will be a groundbreaking experience. [...] I strongly believe
that this interactive model editing will please a lot of stakeholders, and increases trust and
acceptance.”

Versatile editing tools. We asked participants to rate specific editing tools in GAM
CHANGER (Fig. 6.11B). All tools were rated favorably, and participants particularly liked
the monotonicity tool and deletion tool (both received the highest rating from all
participants). Monotonicity constraints are common across different domains, which might
explain the high interest in the monotonicity tool. In particular, P4 appreciated that the
monotonicity tool supported regional monotonicity: P4 gave an example from his work
where the relationship between the num of insurance claims and people’s age was expected to form
a “U-shape” (kids and seniors tend to have more insurance claims), and he would like to use
our tool to enforce monotonicity with different directions on the two ends of the shape
function. Unlike the monotonicity tool, the deletion tool had a much simpler functionality,
and yet it was participants’ favorite. P7 liked the deletion tool because it was useful to edit
categorical features, “For missing values and neutral values [in categorical features], we
don’t want to reward them, and we don’t want to punish them, so we usually just neutralize
them [with the deletion tool].” Participants’ overwhelmingly positive feedback provides
evidence that GAM CHANGER is easy to use, and it can help practitioners improve their
ML models through model editing.

6.4.2.3 Fit into model development workflows

Interviews with participants highlight that GAM CHANGER fits into data scientists’ work-
flows. Five participants used Jupyter notebooks to develop ML models, and they all appre-
ciated that they could use GAM CHANGER directly in their notebooks. Many participants
found the “git commit” style of editing history in the History Panel (§ 6.2.2) familiar and use-
ful. When P6 wrote edit commit messages, they followed their company’s git commit style
to include their name and commit type at the end of the message. In addition, P3 found the
editing history and auto-generated messages helpful for their company’s model auditing pro-
cess, “I especially like the history panel where all the edits are tracked. You can technically
use it as a reference when writing your model documentation [for auditors to review].”

A platform for collaboration. Interestingly, many participants commented that besides
model editing, GAM CHANGER would be a helpful tool to communicate and collaborate
with different stakeholders. For example, P5’s work involved collaborating with physicians
to interpret models, and they thought our tool would be a tangible tool to promote discussion
about models: “This work is very important because it lets people discuss about it [model
behaviors].” P1 had been building dashboards to explain models to their marketing teams,
and they would like to use GAM CHANGER to facilitate the communication. Similarly,
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Figure 6.12: Shape function of debt to income ration on the loan approval prediction.

P6 told us they would use our tool to communicate model insights to their stakeholders,
including business partners, UX designers, and the sales team.

6.4.2.4 Diverse ways to use GAM CHANGER

Even with a relatively small sample size of 7 participants, we observed a wide spectrum
of views regarding when and how to edit models. For example, P2 was more conservative
about interactive model editing; they felt it was more “objective” to retrain the model until
it learned expected patterns rather than manually modifying the model. P3 thought GAM
CHANGER would be useful to enforce monotonicity and fix obvious errors, but they were
more cautious and worried about irresponsible edits: “Anyone behind the model can just add
whatever relationship they want, rather than keep the model learn empirically whatever is
in the data. I mean, it [the tool] is good, but you need to be diligent and make sure whatever
changes you made make sense and are justifiable.” On the other side of the spectrum, P5
and P6 found model editing with GAM CHANGER very natural as they had already been
iterating on models with domain experts.

Multiple approaches. In addition to whether and when people should edit models,
participants had different views on how to edit the model. For example, in the model used
in this user study, debt to income ratio ( dti ) is a continuous feature (shown on the right): the
log odds score (y-axis) of an applicant paying off their loan first increases when dti (x-axis)
increases from 0% to 3% (area A); after a plateau (area B), the score then decreases when
dti increases from 8% to 40% (area C). One suggested task is to increase the score for low dti

in area A. Five participants (P1, P2, P3, P4, and P7) commented the trend in area A made
sense—applicants in this range are likely people who have no or little loan experience and
thus less likely to pay off the loan in time. Although the pattern made sense to P3 and P7,
they agreed that one should fix it; P3 and P7 raised the score by aligning all scores in area
A to be the same as area B. P3 explained: “[Although the pattern in area A makes sense,]
we’ll still try to make this relationship monotonic. For the relationship that I described, like
somebody is less experienced with the credit and other stuff, there are other variables that
will factor in, like the number of accounts open.” P7 made the same edit but with a different
reason: “We do not want a model to punish people with no debt.” In contrast to P3 and P7, P4
said they were uncomfortable with raising the scores in area A, and they would need to talk to
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finance experts if they were editing this model in practice. P1 also decided to keep the trend
in area A. Additionally, P1 applied the interpolation tool to smooth the score increase in
area A and decrease in area C, because P1 believed small bumps in area A and area C are due
to overfitting. Participants’ diverse views on whether, when, and how to edit models highlight
that users with different backgrounds may use GAM CHANGER differently in practice.

6.5 Discussion and Future Work

Reflecting on our iterative design of GAM CHANGER with diverse stakeholders, model edit-
ing experiences with physicians, and an evaluation with data scientists in various domains,
we distill lessons and future directions for model editing and interpretability research.

Promote accountable edits & develop guidelines. Our user study shows model
editing via feature engineering and parameter tuning is already common practice in data
scientists’ workflow (§ 6.4.2.1). As the first interactive model editing tool, GAM CHANGER

lowers the barrier to modifying model behaviors to reflect users’ domain knowledge and
values. We find different users could have distinct views on whether, when, and how to
edit models (§ 6.4.2.4). Some users might raise concerns that GAM CHANGER makes
model editing too easy, and that irresponsible edits could potentially cause harm (e.g., P3
in § 6.4.2.4). Guarding against harmful edits is our top priority—we provide users with
continuous feedback (§ 6.2.1), as well as transparent and reversible edits (§ 6.2.2). However,
they do not guarantee to prevent users from overfitting the model, injecting harmful bias, or
maliciously manipulating model predictions. This potential vulnerability warrants further
study on how to audit and regulate model editing.

To help “model editors” modify ML models responsibly, we see a pressing need of
guidelines that unify best practices in model editing. However, model editing is complex—
whether, when, and how to edit a model depends on many factors, including the data,
model’s behaviors, and end-tasks in a sociotechnical context. Take our sepsis risk prediction
model as an example (§ 6.3.1); we inform our edit decisions by considering treatment
effects, the potential impact of edits, and physicians’ values. We make specific edits because
physicians prefer false positives over false negatives when predicting sepsis risks—we
will make different edits if false negatives are favored. For example, in prostate cancer
screenings, false positives are much riskier than false negatives [259]. Therefore, we may
prioritize lowering the predicted risk when fixing problematic patterns in a risk prediction
model for prostate cancer. Using GAM CHANGER as a research instrument, we plan to
develop editing guidelines by further research that engages with experts in diverse domains
as well as people who would be impacted by edited models.

Measure real-life impacts. GAM CHANGER provides continuous feedback on model
performance (§ 6.2.2). Due to the additive nature of GAMs, global metrics—computed on
all validation samples—are not very sensitive to edits that slightly change a few bins of a
single feature. An edit’s effect is more significant when we measure the accuracy locally,
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such as in the Selected Scope or the Slice Scope. The Metric Panel’s goal is to alert users
of accidental edits that might demolish the model’s predictive power or disproportionally
affect a subgroup in the data. However, GAM CHANGER’s ultimate goal is to help users
create safer and more correct models—accuracy on the train and test sets is a secondary
metric. To evaluate model editing, we need to measure edited models’ performance for their
intended use. In high-stakes settings such as healthcare, editing would make a substantial
impact if it changed a deployed model’s prediction on one patient. We plan to adapt the
edited sepsis risk prediction model (§ 6.3.1) in a large hospital and conduct a longitudinal
study to monitor and investigate the model’s performance.

Enhance collaborative editing. When using GAM CHANGER to edit healthcare
models with physicians, we find the tool provides a unique collaborative experience for ML
researchers and domain experts to discuss, interpret, and improve models together. Our user
study echos this observation: (1) participants had been editing models through teaming with
diverse stakeholders including domain experts, auditors, and marketing teams (§ 6.4.2.1);
(2) participants appreciated GAM CHANGER as a platform to facilitate ML communication
with various stakeholders (§ 6.4.2.3). Therefore, we would like to further enhance the
tool’s affordance for collaborations. We plan to explore interaction techniques that support
multiple users to edit the same model simultaneously (e.g., Google Slides). Also, we plan to
enhance our Git-inspired editing history to support users to merge multiple independent edit
series onto one model—enabling collaborators to easily edit a model asynchronously.

6.6 Conclusion

In this work, we present GAM CHANGER, an interactive visualization tool that empowers
domain experts and data scientists to not only interpret ML models, but also align model
behaviors with their knowledge and values. This open-source tool runs in web browsers or
computational notebooks, broadening people’s access to responsible ML technologies. We
discuss lessons learned from two editing examples and an evaluation user study. We hope
our work helps emphasize the critical role of human agency in responsible ML research,
and inspire future work in actionable ML interpretability.

6.7 Impact

GAM CHANGER is deployed in Microsoft and integrated into their open-source library
InterpretML. The tool is used by physicians in NYU hospitals on real-life hospital admission
prediction models. An early version of the publication has won the Best Paper Award at
the NeurIPS Workshop on Bridging the Gap: From ML Research to Clinical Practice.
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CHAPTER 7
GAM COACH: HELPING PEOPLE ALTER UNFAVORABLE AI DECISIONS

As AI models are increasingly used in high-stakes decision-making, such as lending, hiring,
and college admissions, there has been a call for algorithmic recourse, which aims to
help those impacted by AI systems not only learn about the decision rules used, but also
provide suggestions for actions to change decision outcome in the future [59]. This often
involves generating counterfactual (CF) examples, which suggest minimal changes in a
few features that would lead to the desired decision outcome. There are many techniques
to generate CF examples. However, the actionability of recourse is ultimately subjective
and varies from one user to another, or even for a single user at different times. To realize
human agency in algorithmic recourse, we introduce GAM COACH to enable an interactive
algorithmic recourse paradigm. GAM COACH enables people impacted by AI to specify
their recourse preferences, such as difficulty and acceptable range for changing a feature,
and iteratively fine-tune recourse plans. With an exploratory interface design, our tool helps
users understand the ML model behaviors by experimenting with hypothetical input values
and inspecting their effects on model outcomes.

7.1 Introduction

As machine learning (ML) is increasingly used in high-stakes decision-making, such as
lending [260], hiring [261], and college admissions [262], there has been a call for greater
transparency and increased opportunities for algorithmic recourse [59]. Algorithmic recourse
aims to help those impacted by ML systems learn about the decision rules used [263], and
provide suggestions for actions to change decision outcome in the future [264]. This often
involves generating counterfactual (CF) examples, which suggest minimal changes in a
few features that would have led to the desired decision outcome [59], such as “if you had
decreased your requested loan amount by $9k and changed your home ownership from
renting to mortgage, your loan application would have been approved.” (Fig. 7.1A)

Figure 7.1: GAM Coach enables end users to iteratively finetune recourse plans. (A) If a user finds
the initial generic plan less actionable, (B) they can specify their recourse preferences through simple
interactions. (C) Our tool will then generate tailored plans that reflect the user’s preferences.

83



Figure 7.2: GAM COACH enables people impacted by AI-based decision-making systems to
iteratively generate algorithmic recourse plans that reflect their preferences. Take the loan application
as an example. (A) The Coach Menu helps a rejected loan applicant browse diverse recourse plans
that would lead to loan approval. After the user selects a plan, (B) the Feature Panel visualizes all
feature information with progressive disclosure, enabling users to explore how hypothetical inputs
affect the model’s decision and specify recourse preferences—such as (B1) the difficulty of changing
a feature and (B2) its acceptable range of values—guiding GAM Coach to generate actionable plans.
(C) The Bookmarks window allows users to compare bookmarked plans and save a verifiable receipt.

For such approaches to be useful, it is necessary for the suggested actions to be action-
able—realistic actions that users can appreciate and follow in their real-life circumstances.
In the example above, changing home ownership status would arguably not be an actionable
suggestion for most loan applicants. To provide actionable recourse, recent work proposes
techniques such as generating concise CF examples [265], creating a diverse set of CF ex-
amples [266, 267], and grouping features into different actionability categories [268]. These
approaches often rely on the underlying assumption that ML developers can measure and pre-
dict which CF examples are actionable for all users. However, the actionability of recourse is
ultimately subjective and varies from one user to another [269, 270], or even for a single user
at different times [271, 272]. Therefore, there is a pressing need to capture and integrate user
preferences into algorithmic recourse [273, 270]. GAM COACH aims to take a user-centered
approach (Fig. 7.1B–C) to fill this critical research gap. In this work, we contribute:

• GAM COACH, the first interactive algorithmic recourse tool that empowers end
users to specify their recourse preferences, such as difficulty and acceptable range for
changing a feature, and iteratively fine-tune actionable recourse plans (Fig. 7.2). With
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an exploratory interface design [274], our tool helps users understand the ML model
behaviors by experimenting with hypothetical input values and inspecting their effects
on the model outcomes. Our tool advances over existing interactive ML tools [275,
276], overcoming unique design challenges identified from a literature review of recent
algorithmic recourse work (§ 7.2, § 7.4).

• Novel adaptation of integer linear programming to generate CF examples. To
operationalize interactive recourse, we ground our research in generalized additive models
(GAMs) [277, 11], a popular class of models that performs competitively to other state-
of-the-art models yet has a transparent and simple structure [253, 250, 278, 7]. GAMs
enable end users to probe model behaviors with hypothetical inputs in real time directly in
web browsers. Adapting integer linear programming, we propose an efficient and flexible
method to generate optimal CF examples for GAM-based classifiers and regressors with
continuous and categorical features and pairwise feature interactions [251] (§ 7.3).

• Design lessons distilled from a user study with log analysis. We conducted an on-
line user study with 41 Amazon Mechanical Turk workers to evaluate GAM COACH

and investigate how everyday users would use an interactive algorithmic recourse tool.
Through analyzing participants’ interaction logs and subjective ratings in a hypothetical
lending scenario, our study highlights that GAM COACH is usable and useful, and users
prefer personalized recourse plans over generic plans. We discuss the characteristics of
users’ satisfactory recourse plans, approaches users take to discover them, and design
lessons for future interactive recourse tools. We also provide empirical evidence that
with transparency, everyday users can discover and are often puzzled by counterintuitive
patterns in ML models (§ 7.5).

• An open-source, web-based implementation that broadens people’s access to developing
and using interactive algorithmic recourse tools. We implement our CF generation method
in both Python and JavaScript, enabling future researchers to use it on diverse platforms.
We develop GAM COACH with modern web technologies such as WebAssembly, so that
anyone can access our tool using their web browsers without the need for installation
or a dedicated backend server. We open-source1 our CF generation library and GAM
COACH system with comprehensive documentation2 (§ 7.4.5). For a demo video of GAM
COACH, visit https://youtu.be/ubacP34H9XE.

To design and evaluate a prospective interface [274] for interactive algorithmic recourse,
we situate GAM COACH in loan application scenarios. However, we caution that adapting
GAM COACH for real lending settings would require further research with financial and
legal experts as well as people who would be impacted by the system. Our goal is for this
work to serve as a foundation for designing future user-centered recourse tools.

1GAM COACH code: https://github.com/poloclub/gam-coach
2GAM COACH documentation: https://poloclub.github.io/gam-coach/docs
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7.2 Design Goals

Our goal is to design and develop an interactive, visual experimentation tool that respects
end users’ autonomy in algorithmic recourse, helping them discover and fine-tune recourse
plans that reflect their preferences and needs. We identify five main design goals of GAM
COACH through synthesizing the trends and limitations of traditional algorithmic recourse
systems [e.g., 270, 279, 280, 281, 274, 59, 282].

G1. Visual summary of diverse algorithmic recourse plans. To help end users find
actionable recourse plans, researchers suggest presenting diverse CF options that users
can pick from [266, 270]. Thus, GAM COACH should efficiently generate diverse
recourse plans (§ 7.3.2) and present a visual summary of each plan as well as display
multiple plans at the same time (§ 7.4.1). This could help users compare different
strategies and inform interactions to generate better recourse plans.

G2. Easy ways to specify recourse preferences. What makes a recourse plan actionable
varies from one user to another—it is crucial for a recourse tool to enable users to
specify a wide range of recourse preferences [270, 281, 273]. Therefore, we would
like to allow users to easily configure (1) the difficulty of changing a feature, (2) the
acceptable range within which a feature can change, and (2) the maximum number of
features that a recourse plan can change (§ 7.4.2), and GAM COACH should generate
plans reflecting users’ specified preferences (§ 7.3.3). This interactive recourse design
would empower users to iteratively customize recourse plans until they find satisfactory
plans.

G3. Exploratory interface to experiment with hypothetical inputs. The goal of algo-
rithmic recourse is not only to help users identify actions to alter unfavorable model
decisions, but also to help them understand how a model makes decisions [59, 279].
When explaining a model’s decision-making, research shows that interfaces allowing
users to probe an ML model with different inputs help users understand model behav-
iors and lead to greater satisfaction with the model [283, 284, 274, 276]. Therefore,
we would like GAM COACH to enable users to experiment with different hypothetical
inputs and inspect how these changes affect the model’s decision (§ 7.4.2).

G4. Clear communication and engagement. The target users of GAM COACH are
everyday people who are usually less knowledgeable about ML and domain-specific
concepts [285]. Our goal is to design and develop an interactive system that is easy
to understand and engaging to use, requiring the tool to communicate and explain
recourse plans and domain-specific information to end users (§ 7.4.2, § 7.4.3).

G5. Open-source and model-agnostic implementation. We aim to develop an interactive
recourse tool that is easily accessible to users, with no installation required. By using
web browsers as the platform, users can directly access GAM COACH through their
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laptops or tablets. Additionally, we aim to make our interface model-agnostic so that
future researchers can use it with different ML models and recourse techniques. Finally,
we would like to open-source our implementation and provide documentation to support
future design, research, and development of interactive algorithmic recourse (§ 7.4.5).

7.3 Techniques for Customizable Recourse Generation

Given our design goals (G1–G5), it is crucial for GAM COACH to generate customizable
recourse plans interactively with a short response time. Therefore, we base our design on
GAMs, a family of ML models that perform competitively to state-of-the-art models yet
have a transparent and simple structure—enabling end users to probe model behaviors in
real-time with hypothetical inputs. In addition, with a novel adaptation of integer linear
programming (§ 7.3.2), GAMs allow us to efficiently generate recourse plans that respect
users’ preferences and thus achieve our design goals (§ 7.3.3).

7.3.1 Model Choice

To operationalize our design of interactive algorithmic recourse, we ground our research
in GAMs [12]. More specifically, we make use of a type of GAMs called Explainable
Boosting Machines, (EBMs) [11, 7], which perform competitively to the state-of-the-art
black-box models yet have a transparent and simple structure [253, 250, 278, 7]. Compared
to simple models like linear models or decision trees, EBMs achieve superior accuracy by
learning complex relations between features through gradient-boosting trees [251], and thus
deploying our design is realistic. Compared to complex models like neural networks, EBMs
have a similar performance on tabular data but a simpler structure; therefore, users can probe
model behaviors in real-time with hypothetical inputs (G3).

Given an input x ∈ Rk with k features, the output y ∈ R of an EBM model can be
written as:

y = l (Sx)

Sx = β0 + f1 (x1) + f2 (x2) + · · ·+ fk (xk) + · · ·+ fij(xi, xj)
(7.1)

Here, each shape function fj for single features j ∈ {1, 2, . . . , k} or fij(xi, xj) for pairwise
interactions between features [251] is learned using gradient-boosted trees [252]. Sx is the
sum of all shape function outputs as well as the intercept constant β0. The model converts
Sx to the output y through a link function l that is determined by the ML task. For example,
a sigmoid function is used for binary classifications, and an identity function for regressions.

What distinguishes EBMs from other GAMs is that the shape function fj or fij is an
ensemble of trees, mapping a main effect feature value xj or a pairwise interaction (xi, xj)

to a scalar score. Before training, EBM applies equal-frequency binning on each continuous
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feature, where bins have different widths but the same number of training samples. This
discrete bucketing process is commonly used to speed up gradient-boosting tree methods
with little cost in accuracy, such as in popular tree-based models LightGBM [286] and
XGBoost [287]. For categorical features, EBMs treat each discrete level as a bin. Once an
EBM model is trained, the learned parameters for each ensemble of trees which defines the
feature split points and scores in each region defined by these split points are transformed
to a lookup histogram (for univariate features) and a lookup table (for pairwise interactions).
When predicting on a data point, the model first looks up corresponding scores for all feature
values and interaction terms and then applies Equation 7.1 to compute the output.

7.3.2 CF Generation: Integer Linear Programming

A recourse plan is a CF example c that makes minimal changes to the original input x but
leads to a different prediction. Without loss of generality, we use binary classification as an
example, with sigmoid function σ(a) = 1

1+e−a as a link function. If σ (Sx) ≥ 0.5 or Sx ≥ 0,
the model predicts the input x as positive; otherwise it predicts x as negative. To generate
c, we can change x so that the new score Sc has a different sign from Sx. Note that Sx is a
linear combination of shape function scores and so is Sc − Sx. Thus, we can express this
counterfactual constraint as a linear constraint. To enforce c to only make minimal changes
to x, we can minimize the distance between c and x, which can also be expressed as a linear
function. Since all constraints are linear, and there are a finite number of bins for each
feature, we express the GAM COACH recourse generation as an integer linear program:

min distance (7.2a)

s.t. distance=
k∑

i=1

∑
b∈Bi

dibvib (7.2b)

−Sx≤
k∑

i=1

∑
b∈Bi

gibvib+
∑

(i,j)∈N

∑
b1∈Bi

∑
b2∈Bj

hijb1b2zijb1b2 (7.2c)

zijb1b2=vib1vjb2 for (i, j)∈N, b1∈Bi, b2∈Bj (7.2d)∑
b∈Bi

vib≤1 for i=1, . . . , k (7.2e)

vib∈{0, 1} for i=1, . . . , k, b∈Bi (7.2f)
zijb1b2∈{0, 1} for (i, j)∈N, b1∈Bi, b2∈Bj (7.2g)

We use an indicator variable vib (7.2f) to denote if a main effect bin is active: if vib = 1,
we change the feature value of xi to the closest value in its bin b. All bin options of xi

are included in a set Bi. For each feature xi, there can be at most one active bin (7.2e); if
there is no active bin, then we do not change the value of xi. We use an indicator variable
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zijb1b2 (7.2g) to denote if a pairwise interaction effect is active—it is active if and only if bin
b1 of xi and bin b2 of xj are both active (7.2d). The set N includes all available interaction
effect terms. Constraint 7.2b determines the total distance cost for a potential CF example;
it uses a set of pre-computed distance costs dib of changing one feature xi to the closest
value in bin b. Constraint 7.2c ensures that any solution would flip the model prediction, by
gaining enough total score from main effect scores (gib) and interaction effect scores (hijb1b2).
Constants gib and hijb1b2 are pre-computed and adjusted for cases where a single active main
effect bin results in changes in interaction terms.

Novelty. Advancing existing works that use integer linear programs for CF generation
(on linear models [264] or using a linear approximation of neural networks [288]), our
algorithm is the first that works on non-linear models without approximation. Our algorithm
is also the first and only CF method specifically designed for EBM models. Without it,
users would have to rely on model-agnostic techniques such as genetic algorithm [289] and
KD-tree [290] to generate CF examples. These model-agnostic methods do not allow for
customization. Also, by quantitatively comparing our method with these two model-agnostic
CF techniques on three datasets, we find CFs generated by our method are significantly
closer to the original input, more sparse, and encounter less failures.

Generalizability. Our algorithm can easily be adapted for EBM regressors and multi-
class classifiers. For regression, we modify the left side and the inequality of constraint 7.2c
to bound the prediction value in the desired range. For multiclass classification, we can mod-
ify constraint 7.2c to ensure that the desired class has the largest score. In addition to EBMs,
one can also easily adapt our algorithm to generate CF examples for linear models [264].
For other non-linear models, such as neural networks and random forest, one can first use
a linear approximation [288] and then apply our algorithm, verifying suggested recourse
plans with respect to the original model. If the suggested recourse plan would not change
the output of the original model, an alternative can be generated by solving the program
again with the previous solution blocked.

Scalability. Modern linear solvers can efficiently solve our integer linear programs. The
complexity of solving an integer linear program increases along two factors: the number of
variables and the number of constraints. In Equation 7.2, all variables are binary—making
the program easier to solve than a program with non-binary integer variables. For any
dataset, there are always exactly 3 constraints from 7.2b, 7.2c, and 7.2e. The number of
constraints from 7.2d increases along the number of interaction terms |N | and the number
of bins per feature |Bi| on these interaction terms. In practice, |N | and |Bi| are often
bounded to ensure EBM are interpretable. For example, by default the popular EBM library
InterpretML [7] bounds |N | ≤ 10 and |Bi| ≤ 32. Therefore, in the worst-case scenario with
10 continuous-continuous interaction terms, there will be at most 10× 32× 32 = 10, 240

constraints from 7.2d. For instance, on the Communities and Crime dataset [291] with 119
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Figure 7.3: A bar chart visualizes the model’s decision score of a recourse plan: the bar is marked
with the user’s original score (shorter vertical line on the left) and the threshold needed to obtain the
desired decision (longer vertical line on the right).

continuous features, 1 categorical feature, and 10 pairwise interaction terms, there are about
7.2k constraints and 3.6k variables in our program. It only takes about 0.5–3.0 seconds to
generate a recourse plan using Firefox Browser on a MacBook.

7.3.3 Recourse Customization

With integer linear programming, we can generate recourse plans that reflect a wide range of
user preferences (G2). For example, to prioritize a feature that is easier for a user to change,
we can lower the distance cost dib for that feature. To enforce recourse plans to only change
a feature in a user specified acceptable range, we can remove out-of-range binary variables
vib. If a user requires the recourse plans to only change at most p features, we can add an
additional linear constraint

∑k
i=1

∑
b∈Bi

vib ≤ p. Finally, with modern linear solvers, we
can efficiently generate diverse recourse plans (G1) by solving the program multiple times
while blocking previous solutions.

7.4 User Interface

Given the design goals (G1–G5) described in § 7.2, we present GAM COACH, an interac-
tive tool that empowers end users to specify preferences and iteratively fine-tune recourse
plans (Fig. 7.4). The interface tightly integrates three components: the Coach Menu that
provides overall controls and organizes multiple recourse plans as tabs (§ 7.4.1), the Feature
Panel containing Feature Cards that allow users to specify recourse preferences with simple
interactions (§ 7.4.2), and the Bookmark Window summarizing saved recourse plans (§ 7.4.3).
To explain these views in this section, we use a loan application scenario with the Lending-
Club dataset [258], where a bank refers a rejected loan applicant to GAM COACH pre-loaded
with the applicant’s input data. Our tool can be easily applied to GAMs trained on different
datasets while providing a consistent user experience. On GAM COACH’s public demo page,
we present five additional examples with five datasets that are commonly used in algorithmic
recourse literature: Communities and Crime [291] (also used in the second usage scenario
in § 7.4.4), Taiwan Credit [292], German Credit [293], Adult [294], and COMPAS [2].

7.4.1 Coach Menu

The Coach Menu (Fig. 7.2A) is the primary control panel of GAM COACH. Users can
use the dropdown menu and input fields to specify desired decisions for classification and
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Figure 7.4: GAM COACH enables end users to inspect and customize recourse plans through simple
interactions. (A) Initial generic plans are generated with the same configurations for all users. (B)
Users can specify recourse preferences if they are not satisfied with the initial plans; by configuring
(B1) the difficulty to change a feature; (B2) the acceptable range that a feature can change between,
and (B3) the max number of features that a recourse plan can alter. (C) GAM COACH then generates
personalized plans that respect users’ preferences. Users can iteratively refine their preferences until
a satisfactory plan is found.

regression. For each recourse plan generation iteration, the tool generates five diverse
plans (G1) to help users achieve their goal, with each plan representing a CF example.
Users can access each plan by clicking the corresponding tab on the plan tab bar. When a
plan is selected, the Feature Panel updates to show details about the plan, and the plan’s
corresponding tab extends to show the model’s decision score (Fig. 7.3). Users can click the
Bookmarks button to open the Bookmarks window and click the Regenerate button to generate

five new recourse plans that reflect the currently specified recourse preferences.

7.4.2 Feature Panel

Each recourse plan has a unique Feature Panel (Fig. 7.2B) that visualizes plan details and
allows users to provide preferences guiding the generation of new plans (G2). A Feature
Panel consists of Feature Cards where each card represents a data feature used in the model.
To help users easily navigate through different features, the panel groups Feature Cards into
three sections: (1) features that are changed in the plan, (2) features that are configured by
the user, (3) and all other features. To prevent overwhelming users with too much informa-
tion (G4), all cards are collapsed by default—only displaying the feature name and feature
values. Users can hover over the feature name to see a tooltip explaining the definition of the
feature (G4). With a progressive disclosure design [295, 296], details of a feature, such as the
distribution of feature values, are only shown on demand after users click that Feature Card.
Progressive disclosure also makes GAM COACH interface scalable, as users can easily scroll
and browse over hundreds of collapsed Feature Cards. Since EBMs process continuous and
categorical features differently, we employ different card designs based on the feature type.

Continuous Feature Card. For continuous features, such as FICO score , the Feature
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Figure 7.5: Users can test hypothetical input values in real time.

Figure 7.6: Distance multipliers of difficulties.

Card (Fig. 7.5) uses a filled curved chart to visualize the distribution of feature values in
the training set. Users can drag the diamond-shaped thumb on a slider below the chart to
experiment with hypothetical values. During dragging, the decision score bar updates its
width to reflect a new prediction score in real time. Therefore, users can better understand
the underlying decision-making process by probing the model with different inputs (G3).
Also, users can drag the orange thumbs to set the lower and upper bounds of acceptable
feature changes. For example, one user might only accept recourse plans that include
loan amount at $12k or higher (Fig. 7.4-B2).

Categorical Feature Card. For categorical features, such as home ownership , users can
inspect the value distribution with a horizontal bar chart (Fig. 7.4-B1), where a longer bar
represents more frequent options in the training data. To specify acceptable ranges, users
can click the bars to select acceptable options for new recourse plans. Acceptable options
are highlighted as orange, whereas unacceptable options are colored as gray. Users can also
click text labels next to the bars to experiment with hypothetical options and observe how
they affect the model decision.

Specify Difficulty to Change a Feature. Besides selecting a feature’s acceptable range,
users can also specify how hard it would be for them to change a feature. For example, it
might be easier for some users to lower credit utilization than to change home ownership . To config-
ure feature difficulties, users can click the smiley button on any Feature Card and then select
a suitable difficulty option on the pop-up window (Fig. 7.4-B1). Internally, GAM COACH

multiplies the distance costs of all bins in that feature with a constant multiplier (Fig. 7.6).
If the user selects the “impossible to change” difficulty, the tool will remove all variables
associated with this feature in the internal integer program (§ 7.3.3). Therefore, when
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Figure 7.7: GAM COACH allows end users to experiment with hypothetical input values and
customize recourse plans. (A) Our tool first shows generic plans generated with default configurations.
(B) Users can explore how different input values affect the model’s prediction in real time through
simple interactions on the Feature Card: for example, lowering the percentage of adults without
a high school diploma increases the chance of getting a government grant. (C) Users can then
specify recourse preferences—such as feature difficulties and acceptable ranges—based on their
circumstances and understanding of the model’s prediction patterns. (D) GAM COACH then generates
more actionable recourse plans based on the user-specified preferences.

generating new recourse strategies, GAM COACH would prioritize features that are easier
to change and would not consider features that are impossible to change.

7.4.3 Bookmarks and Receipt

During the recourse iterations, users can save any suitable plans by clicking the star button
on the plan tab (Fig. 7.3). Then, users can compare and update their saved plans in the

Bookmarks window (Fig. 7.2C). Once users are satisfied with bookmarked plans, they can
save a recourse receipt as proof of the generated recourse plans. Wachter et al. first intro-
duced the recourse receipt concept as a contract guaranteeing that a bank will approve a loan
application if the applicant achieves all changes listed in the recourse plan. GAM COACH is
the first tool to realize this concept by creating a plaintext file that records the timestamp, a
hash of EBM model weights, the user’s original input, and details of bookmarked plans (G4).
In addition, we propose a novel security scheme that uses Pretty Good Privacy (PGP) to
sign the receipt with the bank’s private key [297]. With public-key cryptography, users can
hold the bank accountable by being able to prove the receipt’s authenticity to third-party
authorities with the bank’s public key. Also, banks can use their private key to verify a
receipt’s integrity during recourse redemption to avoid counterfeit receipts.

7.4.4 Usage Scenarios

We present two hypothetical usage scenarios to illustrate how GAM COACH can help
everyday users identify actionable strategies to alter undesirable ML-generated decisions.

Individual Loan Application. Eve is a rejected loan applicant, and she wants to identify
ways to get a loan in the future. In this hypothetical usage scenario, to inform loan decisions,
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the bank has trained an EBM model on past data (we use LendingClub [258] to illustrate this
scenario in Fig. 7.4). Their dataset has 9 continuous features and 11 categorical features, and
the outcome variable is binary—indicating whether a person can pay back the loan in time.
The bank gives Eve a link to GAM COACH when informing her of the loan rejection decision.
After Eve opens GAM COACH in a web browser, the tool pre-loads Eve’s input data and
generates five recourse plans based on the default configurations. Each plan lists a set of
minimal changes in feature values that would lead to loan approval. One plan suggests Eve
lower the requested loan amount from $15k to $9k along with two other changes (Fig. 7.4A).
Eve does not like this suggestion because she is unwilling to compromise a loss of $6k
in the requested loan. Therefore, she clicks the loan amount Feature Card and drags the left
thumb to set the acceptable range of loan amount to $12k and above (Fig. 7.4-B2). After
browsing all recourse plans in the Coach Menu, Eve finds that none of the plans suggest
changes to home ownership . Eve and her partner are actually moving to their newly-purchased
condo next month. Therefore, Eve sets the acceptable range of home ownership to “mortgage”
and changes its difficulty to “very easy” (Fig. 7.4-B1). Eve also prefers plans that change
fewer features, so she clicks the dropdown menu on the Feature Panel to ask the tool to
only generate plans that change at most two features (Fig. 7.4-B3). After Eve clicks the
Regenerate button, GAM COACH quickly generates five personalized plans that respect Eve’s

preferences. Among these plans, Eve especially likes the one suggesting she lower the
loan amount by about $200 and change home ownership to mortgage (Fig. 7.4C). Finally, Eve
bookmarks this plan and downloads a recourse receipt that guarantees her a loan if all
suggested terms are met. Eve plans to apply for the loan again at the same bank next month.

Government Grant Application. Hal is a county manager in the United States. He has
applied for a federal grant for his county. Unfortunately, his application is rejected. He wants
to learn about the decision-making process and what actions he can take to succeed in future
applications. In this hypothetical usage scenario, to inform funding decisions, the federal
government has trained an EBM model on past data (we use the Communities and Crime
dataset [291] to illustrate this scenario in Fig. 7.7). This dataset has 119 continuous features
and 1 categorical feature describing the demographic and economic information of different
counties in the United States, and is used to predict the risk of violent crime. As part of
a performance incentive funding program [298], the federal government provides more
funding opportunities to counties with lower predicted crime risk [299]. Before training the
EBM model, the federal government has removed protected features (e.g., black population ) and
features with many (more than half) missing values, resulting in a total of 94 continuous
features and 1 categorical feature.

The federal government provides rejected counties with a link to GAM COACH when
informing them of the funding decisions. Hal opens GAM COACH in his browser; this
tool has pre-loaded the demographic and economic features of his county and quickly
suggested five recourse plans that would lead to funding. These generic plans are generated
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with the default configuration. One plan (Fig. 7.7A) suggests Hal decrease age percentage (>65)
and increase employed percentage in his county. Hal likes the recommendation of increasing
employed percentage because a higher employment rate is also beneficial for the economy of his
county. However, Hal is puzzled by the suggestion of lowering age percentage (>65) . He is not
sure why the population age is used to decide funding decisions. Besides, lowering the
percentage of the elderly population is not actionable. Therefore, Hal “locks” this feature by
setting its difficulty to “impossible” (Fig. 7.7C).

To gain a better understanding of how the funding decision is made, Hal expands
several Feature Cards and experiments with hypothetical feature values by dragging the blue
thumbs ; GAM COACH visualizes the model’s prediction scores with these hypothetical
inputs in real time (Fig. 7.7B). Hal finds that lowering without high school rate can increase his
chance of getting a grant. This is good news as Hal’s county has just started a high school
dropout prevention program aiming to lower the percentage of adults without a high school
diploma to below 15% in eight years. Hal then sets this feature’s difficulty to “easy to
change” and drags the orange thumbs to set its acceptable range to between 15%
and 22.5% (Fig. 7.7C). After Hal clicks the Regenerate button, GAM COACH generates
five new personalized plans in only 3 seconds despite there being almost 100 features.
Among these five plans, Hal likes the one that recommends decreasing without high school rate by
4.27% (Fig. 7.7D). Finally, Hal saves a recourse receipt, and he will apply for this grant again
once the percentage of adults without a high school diploma in his county drops by 4.27%.

7.4.5 Open-source & Generalizable Tool

GAM COACH is a web-based algorithmic recourse tool that users can access with any web
browser on their laptops or tablets, no installation required (G5). We use GLPK.js [300] to
solve integer programs with WebAssembly, OpenPGP.js [301] to sign recourse receipts with
PGP, and D3.js [180] for visualizations. Therefore, the entire system runs locally in users’
browsers without dedicated backend servers. We also provide an additional Python package3

for developers to generate customizable recourse plans for EBM models without a graphical
user interface. With this Python package, developers and researchers can also easily extract
model weights from any EBM model to build their own GAM COACH. Finally, despite
its name, GAM COACH’s interface is model-agnostic—it supports any ML models where
(1) one can control the difficulty and acceptable range of changing a feature during CF
generation, and (2) model inference is available. With our open-source and generalizable
implementation, detailed documentation, and examples on six datasets across a wide range
of tasks and domains—LendingClub [258], Taiwan Credit [292], German Credit [293],
Adult [294], COMPAS [2], and Communities and Crime [292]—future researchers can
easily adapt our interface design to their models and datasets.

3Python package: https://poloclub.github.io/gam-coach/docs/gamcoach
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7.5 User Study

To evaluate GAM COACH and investigate how everyday users would use an interactive
algorithmic recourse tool, we conducted an online user study with 41 United States-based
crowdworkers. For possible datasets to use in this user study, we compared five public
datasets that are commonly used in the recourse literature: LendingClub [e.g., 266, 302],
Taiwan Credit [e.g., 302, 264, 289], German Credit [e.g., 266, 302, 299], Adult [e.g., 303,
289, 288], and COMPAS [e.g., 266, 303, 304]. We decided to use LendingClub in our study
for the following three reasons. First, we chose a lending scenario as it is one scenario that
many people, including crowdworkers, may encounter in real-life. Second, there is no expert
knowledge needed to understand the setting, making our tasks appropriate for crowdworkers.
Finally, our institute requires research participants to be United States-based: among the
four datasets that can be used in a lending setting (LendingClub, Taiwan Credit, German
Credit, and Adult), LendingClub is the only United States-based dataset collected from a
real lending website. We aimed to answer the following three research questions:

RQ1. What makes a satisfactory recourse plan for end users? (§ 7.5.3.1)

RQ2. How do end users discover their satisfactory recourse plans? (§ 7.5.3.2)

RQ3. How does interactivity play a role in providing algorithmic recourse? (§ 7.5.3.3)

7.5.1 Participants

We recruited 50 anonymous and voluntary United States-based participants from Amazon
Mechanical Turk (MTurk), an online crowdsourcing platform. We did not collect any
personal information. Collected interaction logs and subjective ratings are stored in a secure
location where only the authors have access. The authors’ Institutional Review Board (IRB)
has approved the study. The average of three self-reported task completion times on a
worker-centered forum4 is 321/2-minutes. We paid 41 participants $6.50 per study and 9
participants who had not passed our quality control $5.50. Recruited participants self-report
an average score of 2.7 for ML familiarity in a 5-point Likert-scale, where 1 represents “I
have never heard of ML” and 5 represents “I have developed ML models.”

7.5.2 Study Design

Each participant first signed a consent form and filled out a background questionnaire (e.g.,
ML familarity).

GAM COACH Tutorial and Short Quiz. We directed participants to a Google Sur-
vey and a website containing GAM COACH, task instructions, and tutorial videos. Our
tool, loaded with an EBM binary classifier that predicts loan approval on the LendingClub

4TurkerView: https://turkerview.com/
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Figure 7.8: We asked user study participants to explain why they had chosen their satisfactory plans,
and why they had not chosen two other random plans (not shown in the figure).

dataset [258], contains input values of 500 random test samples on which the model predicts
loan rejection. Participants were asked to watch a 3-minute tutorial video and complete
eight multiple-choice quiz questions. These questions are simple—asking what is shown in
the tool after certain interactions. All participants were asked to perform these interactions
on the same data sample, so we had “ground truth” answers for the quiz questions. We used
the quiz as a “gold standard” question to detect fraudulent responses [305, 306]. Although
participants were prompted that they would need to answer all questions correctly to receive
the base compensation, we paid all participants regardless of their answers. However, in
our analysis, we only included responses from participants who had correctly answered at
least four questions.

Free Exploration with an Imaginary Usage Scenario. After completing the tutorial
and quiz, participants were asked to pretend to be a rejected loan applicant and freely use
GAM COACH until finding at least one satisfactory recourse plan. These satisfactory
recourse plans could be chosen from the first five generic plans that GAM COACH generates
with a default configuration or follow-up plans that are generated based on participants’
configured preferences. To help participants imagine the scenario, we asked them to change
the input sample (one of 500 random samples) until they find one that they feel comfortable
pretending to be. Participants could also manually adjust the input values. After identifying
and bookmarking their satisfactory plans, participants were asked to rate the importance of
configured preferences or briefly explain why no configuration is needed. Then, participants
were asked to explain why they had chosen their saved plans (Fig. 7.8) and why they had
not chosen two other plans, which were randomly picked from the initial recourse plans. To
incentivize participants to write good-quality explanations [307, 308], we told participants
that they could get a $1 bonus reward if their explanations are well-justified. Regardless
of their responses, all participants who had correctly answered at least four quiz questions
were rewarded with this bonus.

Interaction Logging and Survey. While participants were using GAM COACH, the tool
logged all interactions, such as preference configuration, hypothetical value experiment, and
recourse plan generation. Each log event includes a timestamp and associated values. After
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finishing the exploration task, participants were asked to click a button that uploads their inter-
action logs and recourse plan reviews as a JSON file to a secured Dropbox directory. The file-
names included a random number. Participants were given this number as a verification code
to report in the survey response and MTurk submission—we used this number to link a par-
ticipant’s MTurk ID with their log data and survey response. Finally, participants were asked
to complete the survey consisting of subjective ratings and open-ended comments regarding
the tool. As the EBM model used in the study is non-monotonic, the tool sometimes can
suggest counterintuitive changes [270], such as to lower annual income for loan approval. We
asked participants to report counterintuitive recourse plans in the survey if they had seen any.

7.5.3 Results

Out of 50 recruited participants, 41 (P1–P41) correctly answered at least four “quality-
control” questions. In the following sections, we summarize our findings through analyzing
these 41 participants’ interaction logs, recourse plan reviews, and survey responses. We
denote the Wald Chi-Square statistical test score as χ2.

7.5.3.1 RQ1: Characteristics of Satisfactory Recourse Plans

During the exploration task, participants were asked to identify at least one recourse plan
that they would be satisfied with if they were a rejected loan applicant using GAM COACH.
On average, each participant chose 1.54 satisfactory plans. Participants preferred concise
plans that changed only a few features, with an average of 2.11 features per plan.
Chosen plans changed a diverse set of features, including 13 out of 20 features. The most
popular features changed by chosen plans were loan amount (26.3%), FICO score (18.8%), and
credit utilization (11.3%). Features that were not changed by any chosen plans were mostly hard
to change in real life, such as number of bankruptcies and employment length .

Reasons for Choosing Satisfactory Plans. Three main reasons that participants reported
choosing plans were that the plans were (1) controllable, (2) requiring small changes or less
compromise, or (3) beneficial for life in general. Most participants chose recourse plans that
felt realistic and controllable. For example, P30 wrote “I think it’s very possible to reduce my
credit utilization in a short amount of time.” In particular, participants preferred plans that
only changed a few features and required a small amount of change. Participants described
these plans as “simple and fast” (P5), “straightforward” (P7), and “easy to do” (P16). Some
participants chose plans because they could tolerate the compromises. For example, P8 wrote
“I’m fine with the lower loan amount.” Similarly, P11 reported “[The decreased] loan amount
is close to what I need.” Interestingly, some participants favored plans that could benefit their
lives in addition to helping them get loan approval. For example, P14 wrote “[...] lower uti-
lization is good for me anyway from what I know, so this seems like the best plan.” Similarly,
P28 wrote “[this plan] in my opinion would guarantee greater monetary flexibility.”
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Reasons for Not Choosing a Plan. Participants’ explanations for not choosing a plan
mostly complemented the reasons for choosing a plan. Some participants also skipped
plans because they were puzzled by counterintuitive suggestions, did not understand the
suggestions, or just wanted to see more alternatives. First, participants disliked unrealistic
suggestions: P2 explained “It tells me to increase my income. My income is fixed. I cannot
just increase them at a whim.” Similarly, P6 wrote “With inflation it might be harder to use
less credit.” Participants also disliked plans requiring too many changes or a large amount
of change. For example, P30 wrote “The amount of loan suggested to be reduced is too
large. Assuming I’m applying for 9,800 for real, I wouldn’t want to reduce the amount
by more than 30%.” Interestingly, some participants skipped a plan because it suggested
counterintuitive changes. For example, P14 wrote “It seemed like a bug because why would
asking for an extra 13 dollars [in loan amount] result in a loan approval?” Participants
also skipped plans when they did not understand the suggestion: P9 wrote “I’m not exactly
sure what credit utilization is. I looked at the tooltip, but still wasn’t sure.” Finally, some
participants skipped the initial plans because they just wanted to explore more alternatives:
P22 explained “I wanted to check out a few more things before I made my decision.”

Design Lessons. By analyzing the characteristics of satisfactory recourse plans, our user
study is the first study that provides empirical evidence to support several hypotheses from
the recourse literature. We find that participants preferred plans that suggested changes on
actionable features [279, 273], are concise and make small changes [265, 59], and could
benefit participants beyond the recourse goal [270]. Additionally, participants were likely
to save multiple satisfactory plans from one recourse session, highlighting the importance
of providing diverse recourse plans [266]. Our study also shows that with transparency,
end users can identify and dislike counterintuitive recourse plans (see more discussion
in § 7.5.3.3). Therefore, future researchers and developers should help users identify
concise and diverse plans that change actionable features and are beneficial overall. Also,
researchers and developers should carefully audit and improve their models to prevent a CF
generation algorithm from generating counterintuitive plans. Our findings also highlight
that communicating recourse plans and providing a good user experience are as important
as generating good recourse plans.

7.5.3.2 RQ2: Path to Discover Satisfactory Recourse Plans

In the exploration task, participants could freely choose their satisfactory recourse plans
from the initial batch, where plans were generated with default configurations, or from
follow-up batches, where plans reflected participants’ specified preferences. We find that
participants were more likely to choose satisfactory plans that respect participants’ prefer-
ence configurations (33 participants out of 41) than the default plans (8 participants). In
addition, each recourse session had a median of 3 plan iterations. In other words,
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Figure 7.9: Difficulty configuration counts across frequent features highlighting variability of
participants’ preferences.

on average, a participant discovered satisfactory plans after seeing about 15 plans, where
the last 10 plans were generated based on their preferences. The average time to identify
satisfactory plans was 8 minutes and 38 seconds.

Preference configuration is helpful. In GAM COACH, users can specify the difficulty
and acceptable range to change a feature and the max number of features a plan can change.
We find all three preferences helped participants discover satisfactory plans. Among 63
total satisfactory plans chosen by 41 participants, 49 plans (77.78%) reflected at least one
difficulty configuration and 44 plans (69.84%) reflected at least one range configuration.
Also, 12 participants configured the max number of features—seven participants changed it
to 1 and five changed it to 2 (default is 4).

Diverse Preference Configurations. By further analyzing participants’ preferences
associated with their chosen plans, we find (1) participants specified preferences on a wide
range of features; (2) some features were more popular than others; (3) different participants
set different preferences on a given feature. Of the 20 features, at least one participant
changed the difficulty of 16 features (80%) and acceptable range of 13 features (65%).
Among these configured features, participants were more likely to specify preferences on
some than others [χ2 = 54.37, p < 0.001 for the difficulty, χ2 = 27.68, p = 0.006 for
the acceptable range]. For example, 19 satisfactory plans reflected difficulty for loan amount ,
whereas only 1 plan reflected the difficulty for number of past dues . Also, there was high variabil-
ity in configured preferences on popular configured feature (Fig. 7.9). For instance, 6 plans
considered loan amount as “very easy to change,” while 9 plans deemed it as “impossible to
change.” Our findings confirm hypotheses that recourse preferences can be incorporated to
identify satisfactory plans [270, 278], and these preferences are idiosyncratic [273, 269].

Design Lessons. When designing recourse systems, it is useful to allow end users
to specify a wide range of recourse preferences, such as difficulties to change a feature,
acceptable feature ranges, and max number of features to change. Additionally, there can be
predictable patterns in users’ recourse preferences—researchers can leverage these patterns
to further improve user experiences. For example, developers can use the log data of an
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Figure 7.10: Average ratings and rating distributions from 41 participants on the usability and
usefulness of GAM COACH. (A) Participants thought GAM COACH was relatively easy and
enjoyable to use, and the tool helped them identify actions to obtain a preferred ML decision. (B) All
interaction techniques, especially experimenting with hypothetical values, were rated favorably.

interactive recourse tool to train a new ML model to predict users’ preference configurations.
Then, for a new user, developers can predict their recourse preference and use it as the tool’s
default configuration.

7.5.3.3 RQ3: Interactive Algorithmic Recourse

How did participants use and perceive various interactions throughout the exploration
task? Interestingly, 28% of participants who configured difficulty preferences had also
immediately altered the difficulty levels on the same features; most of them have changed
“easy” to “very easy” and “hard” to “very hard.” For acceptable ranges, the percentage
is higher at 88%. It suggests participants may need iterations to learn how preference
configuration works in GAM COACH and then fine-tune configurations to generate better
plans—highlighting the key role of iteration in interactive recourse. Survey response show
that participants found both preference configuration and iteration helpful in finding good
recourse plans (Fig. 7.10B). For example, P30 commented “[I like] how easy it was to make
changes to the priority of each thing. Showing that some things can be easy changes, or
impossible to change, and making plans built around those.” Similarly, P19 wrote “[I like]
regenerating unlimited plans until I find a fit one.”

“What-if” Questions. Besides configuring preferences, participants also engaged in
other modes of interaction with GAM COACH. For example, 32 out of 41 participants exper-
imented with hypothetical feature values (§ 7.4.2), even though it did not affect recourse gen-
erations and was not required in the task. These participants explored median of 3 unique fea-
tures and a median of 5.5 hypothetical feature values . These 32 participants asked
what-if questions on a total of 99 features, and only 39 (39.4%) of these features were from
the presented recourse plan. It suggests that participants were more interested in learning
about the predictive effects of features that have not been changed by GAM COACH. After
exploring what-ifs on these 99 features, participants configured at least one preference (diffi-
culty or acceptable range) on about half of them (49 features, 49.5%). In comparison, these
participants only configured preferences on 13.72% features (87 out of 634) on which they
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had not explored what-ifs or had explored what-ifs after configuring preferences. It shows
that participants were more likely to customize features on which they had explored hypo-
thetical values [χ2 = 85.459, p < 0.00001]. Finally, 20 out of these 32 participants (62.5%)
chose a satisfactory plan with a changed feature on which they had explored what-ifs. It
may suggest participants preferred recourse plans that changed features on which they had
explored what-ifs, but this result is not statistically significant [χ2 = 2.0, p = 0.1573].

By analyzing survey responses, we also find that asking what-if questions was one of the
participants’ favorite features (Fig. 7.10B). For example, P12 wrote “[I like] how it adjusts
the plans in real time and gives you an answer if the loan will be approved.” Throughout the
task, participants also frequently used the tooltip annotations to inspect the decision score
bar (median 8 times per participant) and check the meaning of different features (median
25 times)—highlighting the importance of clearly explaining visual representations and
terminologies in interactive recourse tools.

Counterintuitive recourse plans. We asked participants to report strange recourse
plans that GAM COACH could rarely suggest, such as to lower annual income for loan approval.
To our surprise, 7 out of 41 participants had encountered and reported these counterintuitive
plans! For example, P6 was confused that some plans suggested conflicting changes on the
same feature: “One plan told me to increase the loan amount by $13 while another plan
told me to decrease by $1,613.” Another interesting case was P39: “I don’t understand how
purpose changes approval decision. Something like ‘mortgage’ I understand, but changing
something and all of a sudden you can do a wedding but not home improvement? Like
what?” First, P39 found it counterintuitive that GAM COACH includes the categorical
feature loan purpose as a changeable feature because they thought the model decision should
be independent of the loan purpose . Then, through experimenting with hypothetical values,
P39 was baffled by the observation that two different purposes (wedding and home im-
provement) resulted in two distinct model decisions. Some other participants also attributed
these strange patterns as reasons why they skipped some plans (§ 7.5.3.1). This finding
provides empirical evidence that with transparency, everyday users can discover potentially
problematic behaviors in ML models.

Design Lessons. Overall, interactivity helps users identify satisfactory recourse plans,
and users appreciate being able to control recourse generation. In addition, users like
being able to ask what-if questions; experimenting with hypothetical feature values also
helps them find satisfactory recourse plans. However, it takes time and trial and error for
users to understand how preference configurations affect recourse generation. Therefore,
future interactive recourse tools can improve user experience by focusing on improving
learnability and reversibility. Also, our study shows that interactivity and transparency
could occasionally confuse users with counterintuitive recourse plans. Therefore, future
researchers and developers should carefully audit and improve their ML models before
deploying interactive recourse tools.
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7.5.3.4 Usability

Our survey included a series of 7-point Likert-scale questions regarding the usability of
GAM COACH (Fig. 7.10A). The results suggest that the tool is relatively easy to use (average
5.02), easy to understand (average 4.90), and enjoyable to use (average 5.07). However,
some participants commented that the tool was not easy to learn at first and may be too
complex for users with less knowledge about loans. For example, P5 wrote “Without
the tutorials, it would have taken me much longer to learn how to navigate the program,
because it is not very intuitive at first.” Similarly, P8 wrote “I am decent with finances, but
I’d imagine that other people would have more difficulty [using the tool].” Our participants
were MTurk workers, who are similar to the demographics of American internet users as a
whole, but slightly younger and more educated [305, 309]. Therefore, GAM COACH might
be overwhelming for real-life loan applicants who are less familiar with web technology or
finance. Participants also provided specific feedback for improvement, such as designing a
better way to store and compare all generated plans. Currently, users would lose unsaved
plans when generating new plans, and users could only compare different recourse plans in
the Bookmarks window (§ 7.4.3).

7.6 Limitations

We acknowledge our work’s limitations regarding GAM COACH’s generalizability, usage
scenarios, and user study design.

Generalizability of GAM COACH. To design and develop the first interactive algo-
rithmic recourse tool that enables end users to fine-tune recourse plans with preferences,
we ground our research in GAMs, a class of accurate and transparent ML models with
simple structures. This approach enables us to generate customizable CF examples effi-
ciently. However, not all CF generation algorithms allow users to specify the feature-level
distance functions, acceptable ranges, and max number of features that a CF example can
change. Therefore, while the GAM COACH interface is model-agnostic, it does not directly
support all existing ML models and CF generation methods. Also, our novel CF generation
algorithm is tailored to EBMs. However, one can easily adapt our linear constraints to
generate customizable CF examples for linear models [264]. For more complex non-linear
models (e.g., random forest, neural networks), one can apply our method to a linear ap-
proximation [288] of these models (Equation 7.3.2). We also acknowledge that similar
to most existing CF generation algorithms [280, 270], our algorithm assumes all features
to be independent. However, in practice, many features can be associated. For example,
changing credit utilization is likely to also affect a user’s FICO score . Future work can generalize
our algorithm to dependent features by modeling their casual relationships [268].

Hypothetical Usage Scenarios. We situate GAM COACH in lending and government
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funding settings (§ 7.4.4), two most cited scenarios in existing CF literature [279, 270].
It is important to note that none of the authors have expertise in law, finance, or political
science. Therefore, to adapt GAM COACH for use in real lending and government funding
settings, it would require more research and engaging with experts in the legal and financial
domains as well as people who would be impacted by the systems. In addition, we use
LendingClub [258] and Communities and Crime [291], two largest suitable datasets we
have access to (§ 7.5), to simulate two usage scenarios and design our user study. These
two datasets can have different features and sizes from the data that are used in practice.
Therefore, before adapting GAM COACH, researchers and developers should thoroughly
test our tool on their own datasets.

Simulated Study Design. To study how end users would use interactive recourse tools,
we recruited MTurk workers and asked them to pretend to be rejected loan applicants, and
we logged and analyzed their interactions with GAM COACH. We designed the task to
encourage and help participants simulate the scenario (e.g., rewarding bonus, supporting par-
ticipants to input data or choose data from multiple random samples). However, participants’
usage patterns and reactions may not fully represent real-life loan applicants. We chose to
simulate a lending scenario because (1) crowdworkers may have encountered lending, (2) it
does not require expert knowledge, and (3) we have access to a large and real US-based lend-
ing dataset. We acknowledge that participants’ usage patterns may not full represent users in
other domains. Therefore, it would require further research with actual end users (e.g., loan
applicants, county executives, and bail applicants) to study how GAM COACH can aid them
in real-world settings. In our study, we only collected participants’ familiarity with ML. As
MTurk workers tend to be younger and more educated than average internet users [305, 309],
future researchers can collect more self-reported demographic information (e.g., age, educa-
tion, sex) to study if different user groups would use an interactive recourse tool differently.

Observational Study Design. Our observational log study can provide a portrait of users’
natural behaviors when interacting with interactive algorithmic recourse tools and scale to
a large number of participants [310]. However, it lacks a control group. As algorithmic
recourse research and applications are still nascent, the community has not yet established
a recommended workflow or system that we can use as a baseline in our study. Our main
goal is to study how recourse customizability can help users discover useful recourse plans.
Therefore, to mitigate the lack of a control group, we offer participants the option to abstain
from customizing recourse plans to probe into the usefulness of recourse customizability.
In our analysis, we compare both (1) the numbers of participants who specify recourse
preferences and who do not, (2) and the numbers of satisfactory plans generated with a
default configuration and satisfactory plans generated with a participant-configured prefer-
ence (§ 7.5.3.2). Finally, with our open-source implementation (§ 7.4.5), future researchers
can use GAM COACH as a baseline system to evaluate their interactive recourse tools.
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7.7 Discussion

Reflecting on our end-to-end realization of interactive algorithmic recourse—from UI design
to algorithm development and a user study—we distill lessons and provide a set of future
directions for algorithmic recourse and ML interpretability.

Too much transparency. GAM COACH uses a glass-box model, provides end users
with complete control of recourse plan generation, and supports users to ask “what-if”
questions with any feature values. One might argue that GAM COACH is too transparent
and too much transparency makes the tool unfavorable, because (1) end users can use this
tool for gaming the ML model [311, 312] and (2) this tool fails to protect the decision
maker’s model intellectual property [59]. We acknowledge these concerns. As recourse
research and applications are still nascent, it is challenging to know how we can balance the
benefits of transparency and human agency and the risk of revealing too much information
about the ML model. Our user study shows that with transparency end users can discover
and are often puzzled by counterintuitive patterns in ML models. We believe if GAM
COACH is adopted, it has the potential to incentivize decision makers to create better
models in order to avoid confusion as well as model exploitations. As one of the furthest
realizations of ML transparency, GAM COACH can be a research instrument that facilitates
future researchers to study the tension between decision makers and decision subjects, and
identify the right amount of transparency that most benefits both parties. Then, to adopt
GAM COACH in practice, ML developers can remove certain functionalities or impose
recourse constraints accordingly. For example, if a bank is offering GAM COACH and is
worried about people gaming the system by changing certain features that do not actually
improve their creditworthiness (e.g., opening more credit cards), they could insert their own
optimization constraints that prevent these features from being modified.

Transparent ML models for algorithmic recourse. Black-box ML models are popular
across different domains. To interpret these models, researchers have developed post-hoc
techniques to identify feature importance [e.g. 249, 243] and generate CF examples [e.g.
265, 266]. However, Rudin argues that researchers and practitioners should use transparent
ML models instead of black-box models in high-stake domains due to transparent models’
high accuracy and explanation fidelity. The design of GAM COACH is based on GAMs,
a state-of-the-art transparent model [11, 253]. We would like to broaden the perspective of
using transparent models reflecting on our study. We find that GAM COACH provides oppor-
tunities for everyday users to discover counterintuitive patterns in the ML model. It implies
that ML developers and researchers can also use GAM COACH as a penetration testing tool
to detect potentially problematic behaviors in their models. Note that both black-box and
transparent learning methods would have learned these counterintuitive behaviors [11], but
with a transparent model, developers can further vet and fix these behaviors. As an example,
an ML developer training a GAM can use GAM COACH to iteratively generate recourse
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plans for potential users (e.g., training data where the model gives unfavorable predictions).
If they identify strange suggestions, they can use existing interactive tools [7, 247] to vi-
sualize corresponding shape functions to pinpoint the root cause of these counterintuitive
patterns, and then edit shape function parameters to avoid them from happening during
recourse deployment. Future research can leverage transparent models to distill guidelines
to audit and fix models before recourse deployment.

Put users at the center. We have encountered many challenges in transforming techni-
cally sound recourse plans into a seamless user experience. As the end users of recourse tools
are everyday people who are less familiar with ML and domain-specific concepts, one of our
design goals is to help them understand necessary concepts and have a frictionless experi-
ence (G4). GAM COACH aims to achieve this goal by following a progressive disclosure and
details-on-demand design strategy [296, 295] and presenting textual annotations to explain
visual representations in the tool. However, our user study suggests that few users might still
find it challenging to use GAM COACH at first (§ 7.5.3.4). During our development process,
we identify many edge cases that a recourse application would encounter in practice, such
as features requiring integer values (e.g., FICO score ), features using log transformations (e.g.,
annual income ), or features less familiar to everyday users (e.g., credit utilization ). Our open-source
implementation handles these edge cases, and we provide ML developers with simple APIs
to add descriptions for domain-specific feature names in their own instances of GAM
COACH. However, these practical edge cases are rarely discussed or handled in the recourse
research community, since (1) the field of algorithmic recourse is relatively nascent, (2) and
the main evaluation criteria of recourse research are distance-based statistics instead of user
experience [280]. Therefore, in addition to developing faster techniques to generate more
actionable recourse plans, we hope future researchers engage with end users and incorporate
user experience into their research agenda. Besides interactive visualization, researchers can
also explore alternative mediums to communicate and personalize ML recourse plans and
model explanations, such as through a textual [314] or multi-modal approach [315].

7.8 Conclusion

As ML models are increasingly used to inform high-stakes decision-making throughout
our everyday life, it is crucial to provide decision subjects ways to alter unfavorable model
decisions. In this work, we present GAM COACH, an interactive algorithmic recourse
tool that empowers end users to specify their preferences and iteratively fine-tune recourse
plans. Our tool runs in web browsers and is open-source, broadening people’s access to
responsible ML technologies. We discuss lessons learned from our realization of interactive
algorithmic recourse and an online user study. We hope our work will inspire future research
and development of user-centered and interactive tools that help end users restore their
human agency and eventually trust and enjoy ML technologies.
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Part III
DEMOCRATIZE HUMAN-CENTERED AI

Overview

So far we have developed novel techniques and tools that explain AI to a wide range
of stakeholders (Part I) and empower individuals to exert human agency and guide AI
systems (Part II). However, these endeavors are only useful if they are adopted in practice.
Within the context of an ever-expanding body of research on human-centered and responsible
AI, a critical question arises: How can we democratize access to human-centered AI
techniques and promote its broad adoption? Our work addresses this challenge by integrating
human-centered AI practices into AI practitioners’ existing workflows.

Recently, researchers have made breakthroughs in large language models (LLMs) that
excel in various NLP tasks ranging from classification to translation. With a growing number
of accessible LLMs and prompting tools such as GPT Playground and MakerSuite, we
see an expanding group of “AI prototypers”. Research on human-centered and responsible
AI has shown great risks in developing and deploying LLM-powered applications without
caution. Therefore, to foster the awareness of responsible AI among AI prototypers, we
propose FARSIGHT, an in situ tool that provides in-context feedback to help AI prototypers
envision potential use cases, stakeholders, and harms based on the prompts they are writing.

To lower the barrier to learning and applying human-centered AI practices, we integrate
FARSIGHT into AI practitioners’ existing workflows. For example, our tool helps practi-
tioners envision potential harms associated with their AI features when they are crafting
prompts in Google AI Studio or Jupyter Notebooks. After using FARSIGHT, AI practitioners
in our user study are better able to independently identify potential harms associated with a
prompt and find our tool more useful and usable than existing resources. Their qualitative
feedback also highlights that FARSIGHT makes it easy to consider end-users and think
beyond immediate harms.

Chapter 8
FARSIGHT: Fostering Responsible AI Awareness During Early AI Application
Prototyping. Zijie J. Wang, Chinmay Kulkarni, Lauren Wilcox, Michael Terry, and
Michael Madaio. Proceedings of the 2024 CHI Conference on Human Factors in
Computing Systems, 2024.
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CHAPTER 8
FARSIGHT: FOSTERING RESPONSIBLE AI AWARENESS DURING AI

PROTOTYPING

Prompt-based interfaces for Large Language Models (LLMs) have made prototyping and
building AI-powered applications easier than ever before. However, identifying potential
harms that may arise from AI applications remains a challenge, particularly during prompt-
based prototyping. To address this, we present FARSIGHT, a novel in situ interactive tool
that helps people identify potential harms from the AI applications they are prototyping.
Based on a user’s prompt, FARSIGHT highlights news articles about relevant AI incidents
and allows users to explore and edit LLM-generated use cases, stakeholders, and harms.
We report design insights from a co-design study with 10 AI prototypers and findings from
a user study with 42 AI prototypers. After using FARSIGHT, AI prototypers in our user
study are better able to independently identify potential harms associated with a prompt
and find our tool more useful and usable than existing resources. Their qualitative feedback
also highlights that FARSIGHT encourages them to focus on end-users and think beyond
immediate harms. We discuss these findings and reflect on their implications for designing
AI prototyping experiences that meaningfully engage with AI harms.

8.1 Introduction

As artificial intelligence (AI) becomes increasingly integrated into our everyday lives,
mitigating the societal harms posed by AI technologies has never been more important.
In response to the demand for accountable and safe AI, there have been growing efforts
from both industry and academia towards responsible design and development of AI [316,
86]. The majority of these endeavors focus on machine learning (ML) experts, such as
ML developers and other AI practitioners. For example, researchers have introduced
techniques that help ML developers interpret ML models [243, 249, 7] and assess model

Figure 8.1: (A) AI prototypers from diverse backgrounds and roles use (B) prompting tools to
prototype AI applications. FARSIGHT provides a range of in situ widgets for these tools, helping AI
prototypers envision the potential harms of their AI applications during an early prototyping stage.

108



Figure 8.2: With in situ interfaces and novel techniques, FARSIGHT empowers AI prototypers to
envision potential harms that may arise from their large language models (LLMs)-powered AI
applications during early prototyping. (A) In this example, an AI prototyper is creating a prompt
for an English-to-French translator in a web-based AI prototyping tool. (B) The Alert Symbol from
FARSIGHT warns the user of potential risks associated with their AI application. (C) Clicking the
symbol expands the Awareness Sidebar, highlighting news articles relevant to the user’s prompt (top),
and LLM-generated potential use cases and harms (bottom). (D) Clicking the blue button opens the
Harm Envisioner that allows the user to interactively envision, assess, and reflect on the potential use
cases, stakeholders, and harms of their AI application with the assistance of an LLM.

fairness [317, 318, 319]. Additionally, researchers have also proposed frameworks that target
ML developers’ workflows, such as improving data collection and annotation practices [320,
321, 322], documenting training data and models [323, 324, 325], and anticipating an ML
product’s potentials for harms [326, 85].

However, more recently, we have witnessed a rapid advancement of large language
models (LLMs) such as Gemini [330] and GPT-4 [331], alongside the emergence of prompt-
based interfaces like Google AI Studio [327], GPT Playground [332], AI Chains [333], and
Wordflow [334] (Fig. 8.1B). These general-purpose models and easy-to-use interfaces have
significantly increased access to the process of prototyping and building diverse AI-powered
applications—leading to a paradigm shift in AI development workflows that poses unique
challenges to responsible AI, including introducing new potential harms to avoid [97], as
well as challenges applying existing responsible AI practices [335].

Many people who use prompts to create AI applications now encompass a broader
spectrum of roles beyond traditional ML experts (Fig. 8.1A), such as designers, writers,
lawyers, and everyday users [336, 337, 338, 339], whereas existing responsible AI research
often targets ML experts such as ML engineers and data scientists [340, 341]. Many users
of AI prompt-based prototyping interfaces [e.g., 327, 333, 332, 334], or “AI prototypers”
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Figure 8.3: FARSIGHT fits into AI prototypers’ prompting workflows including prompting GUIs and
computational notebooks. (A) When an AI prototyper writes prompts for a therapy chatbot in Google
AI Studio [327], FARSIGHT’s Chrome extension alerts the user about related accidents and potential
harms. (B) When an AI prototyper writes prompts for a toxicity classifier in Jupyter Notebook [328,
329], FARSIGHT’s Python library shows potential negative consequences of this classifier.

[cf. 337] do not have experience in AI or computer science, which can lead to challenges
in anticipating the consequences of their AI applications [316]—a difficult task even for
computer science faculty and AI researchers [94, 89]. Furthermore, LLMs demonstrate
a wide range of capabilities that are continually being discovered across various contexts,
including tasks such as summarization, classification, and translation [96, 342]. This
characteristic of LLMs gives rise to complex and uncertain impacts of LLM-powered
applications [343], presenting a significant departure from the classical ML models targeted
by existing responsible AI endeavors [335, 97] and introducing a new layer of complexity
for responsible AI researchers to help AI developers anticipate downstream consequences.

To help address these challenges in applying responsible AI practices to LLM-powered
AI applications, we present FARSIGHT (Fig. 8.2, Fig. 8.1B), an interactive tool to help AI
prototypers identify potential harms of their LLM-powered applications—a key early step
in harm prevention and mitigation [344, 345, 346, 347, 326]—during the prototyping stage.
Using FARSIGHT as a probe, we conduct multiple mixed-method user studies to investigate
(1) how an early-stage intervention changes AI prototypers’ awareness of and approach to
identifying harms, (2) the effectiveness of our tool in helping people envision harms, and (3)
the challenges AI prototypers face during this harm envisioning process. We contribute:

• FARSIGHT, the first in situ interactive harm envisioning tool that empowers AI
prototypers to identify potential harms that may arise from their prompt-based AI
applications, directly within their prompting environments (Fig. 8.2, Fig. 8.1). Inspired
by prior harm envisioning frameworks [326, 95, 85] and in situ security alert tools [129,
130, 131], FARSIGHT overcomes unique design challenges identified from a literature
review and a co-design user study with 10 AI prototypers (§ 8.2).
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• Novel techniques and interactive system designs to foster responsible AI aware-
ness among AI prototypers. Given a user’s prompt, FARSIGHT leverages embedding
similarities to surface news articles about relevant AI incidents from the AI Incident
Database [348] and uses LLMs to generate potential use cases, impacted stakeholders,
and harms for AI prototypers to review, edit, and add to. Applying a progressive disclo-
sure design [296], our tool fits into users’ diverse prompting workflows. With a novel
adaptation of node-link diagrams [349], FARSIGHT enables users to interactively visualize,
generate, and edit use cases, stakeholders, and harms (§ 8.3).

• Empirical findings about harm envisioning processes from a co-design study and
an evaluation study. During our design of FARSIGHT, we conducted a co-design study
with 10 AI prototypers to evaluate our design ideas and generate new ideas (§ 8.2). After
developing FARSIGHT, we conducted an evaluation user study with 42 AI prototypers
to examine the effectiveness of FARSIGHT in aiding users to brainstorm harms and
improving their ability to independently identify harms. Our mixed-method analysis
highlights that, after using FARSIGHT, AI prototypers are better able to independently
identify potential harms that might arise from an application developed with a given
prompt, and participants report that our tool is more useful and usable than existing
resources. In particular, FARSIGHT encourages users to shift their focus from the AI
model to the end-users, providing them with a broader perspective to consider indirect
stakeholders and cascading harms (§ 8.5).

• An open-source, web-based implementation that lowers the barrier to applying respon-
sible AI practices. We develop FARSIGHT with cutting-edge web technologies, such as
Web Components [350] and WebGL [351], so that it can be easily integrated into any
web-based prompt development environments, such as Google AI Studio and Jupyter
Notebook (Fig. 8.3). We open source1 FARSIGHT as a collection of reusable interactive
components that future researchers and designers can easily adopt (§ 8.3.4). To see a
demo video of FARSIGHT, visit https://youtu.be/BlSFbGkOlHk.

8.2 Formative Study & Design Goals

To identify the needs and potential challenges faced by users in envisioning harms, we
conducted a formative co-design study to investigate (1) how AI prototypers envision harms
(if they do), (2) what design ideas are most helpful for them, and (3) how to motivate users
to think about potential risks when prototyping an AI application. In this section, we report
our findings from the formative co-design study, and in § 8.5, we report on our findings
from a subsequent evaluation user study.

1FARSIGHT code: https://github.com/PAIR-code/farsight
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Table 8.1: The co-design user study includes 10 participants with diverse roles. All par-
ticipants have experience in prompting LLMs. Four participants who self-reported having
expertise in responsible AI are marked with asterisks (∗).

Participant Roles Participant IDs

Software Engineer 1∗, 4, 5, 6, 7, 10
Research Scientist 3∗, 8∗
Technical Writer 2
Program Manager 9∗

8.2.1 Co-design Study

Participants. To inform our tool’s design, we conducted a co-design user study with
10 AI prototypers based in the United States. These participants were recruited from
Google through internal mailing lists. Our recruitment criteria required participants to have
experience using an internal prompt-crafting tool, PromptMaker [337], which is similar to
Google AI Studio [327] and GPT Playground [332]. Each session was 60 minutes, and
each participant received an average of $50 USD in their choice of a gift card or a donation
to their preferred charity. Among the 10 participants (U1–U10), 6 identified as men, 3
identified as women, and 1 identified as non-binary. Four participants self-reported having
expertise in responsible AI. Information about participants’ job roles is listed in Table 8.1.
All participants are our targeted users (AI prototypers).

Procedure. We structured our study as a “during-design co-design study” [352]. Par-
ticipants were asked to bring a recent prompt that they had written to the study. The study
started with a semi-structured interview regarding participants’ prompting workflows and
their experience in thinking about potential harms linked to their applications. Then partici-
pants were asked to use our very early-stage design prototypes to envision potential harms
associated with their application while thinking aloud. Participants were also presented with
low-fidelity sketches for our other design ideas. These prototypes and sketches can be found
in Fig. 8.6. Finally, we asked participants to rate and provide feedback on all of our design
ideas and generate their own design suggestions.

Design feedback. Interestingly, although perhaps not surprisingly [cf. 340], none of the
6 participants without expertise in responsible AI reported that they typically considered the
potential harms of their AI prototypes when writing prompts, while 3 of the 4 participants
with expertise in responsible AI did report typically anticipating harms during the proto-
typing process. Participants’ ratings were shown in Fig. 8.4. Overall, participants favored
using AI to generate use cases of their AI prototypes, potential stakeholders, and potential
harms. Many participants also highlighted the importance of being able to edit AI-generated
content and control the generation direction (U4, U8). On the other hand, participants were
less in favor of more distracting design ideas (e.g., an anthropomorphized assistant tool
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Figure 8.4: Average ratings on our design ideas from 10 AI prototypers. Features marked with
were presented to participants as early-stage prototypes, while other features were presented as

sketches (see details in Fig. 8.6).

similar to Microsoft Office’s Clippy) or irrelevant content (e.g., the latest, rather than the
most relevant AI incidents). Participants also provided us with helpful usability feedback
that we integrated into our final design of FARSIGHT (§ 8.3).

New design ideas. Participants generated many interesting design ideas to help raise
responsible awareness among AI prototypers. For example, participants recommended
categorizing AI-generated harms (U1, U5), allowing users to rate the severity of harms (U6),
and using users’ input to steer AI generation (U10). We integrated these design ideas
into the final design of FARSIGHT (§ 8.3). Some other interesting design ideas include
designing a game-like reward system to incentivize users to anticipate harms (U5), building
online communities to allow users to share their envisioned harms using FARSIGHT and
seek support (U2), allowing real-time collaborative harm envisioning similar to Google
Slides (U1, U4), and automatically revising a user’s prompt to address identified harms (U4).
We discuss the implications of these design ideas in user motivation (§ 8.6.1) and mitigation
strategies (§ 8.6.3).

8.2.2 Design Goals

Based on our literature review and findings and early feedback from the co-design user
study, we identify the following five design goals (G1–G5) for FARSIGHT.

G1. Guide users in imagining use cases. Existing research highlights the challenges
faced by ML practitioners when attempting to anticipate the uses of their ML-powered
applications and how different individuals or groups may be affected [89, 353, 94, 354].
Confirming this, software engineer U6 noted “You don’t really know how your tool
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could be used, so it’s really hard to envision what harms would be.” The availability
of LLMs and prompt-crafting tools has broadened the spectrum of AI prototypers to
include people without prior technology development experience [336, 337], which
can further magnify the challenges associated with envisioning diverse use cases for
AI applications. Therefore, we design FARSIGHT to help AI prototypers with diverse
backgrounds to brainstorm a wide array of use cases for their AI applications.

G2. Help users understand, organize, and prioritize harms. Depending on an AI
application’s goal, implementation, and context, some harms are more salient than
others [95, 355]. To help AI prototypers assess harms, FARSIGHT should first help
them understand where and how harms might occur and who might be impacted, by
connecting harms to use cases and stakeholders [354, 356, 326]. Participants expressed
a desire for the ability to categorize (U1, U5) and rate the severity (U6) of harms. To
meet these needs, we aim to design an easy-to-use interface that empowers users to
navigate, comprehend, and label harms within diverse potential harm scenarios.

G3. Fit into current workflows and mitigate habituation. In our co-design study, none
of the 6 participants without expertise in responsible AI had previously thought about
harms when writing prompts. We also found some participants were not incentivized to
anticipate harm on their own; for example, U6 explained “To be honest, as a software
engineer, I don’t use policy tools [compliance tools like checklists] unless I have
to.” Thus, to make FARSIGHT easy to adopt, we aim to take inspiration from in situ
warning tools [e.g., 132, 133, 134] to design it in a way that fits into AI prototypers’
existing workflows instead of introducing new workflows. In addition, we aim to
apply strategies like varying content [139] and promoting user input [143] to mitigate
habituation—a common pitfall of in-context warning designs [139, 140].

G4. Promote user engagement and provide compelling examples. Prior research high-
lights that the effectiveness of warning tools depends on their clarity and persuasive-
ness [135, 136]. As we are targeting AI prototypers with diverse experience in AI and
responsible AI, FARSIGHT should be easy to use and understand. When asked what
would help them envision potential harms for their AI applications, many participants
mentioned referring to prior examples of AI harms (U1, U2, U8). For instance, U2 said
“Giving some specific real [harm] examples for different types of seemingly innocuous
applications would help alert people [to consider harms].” Therefore, we aimed to in-
tegrate real examples in FARSIGHT to motivate and help users understand the potential
risk of their applications. Participants like being able to control the harm envisioning
process (Fig. 8.4), and active participation is a key factor in learning [357]—essential
to foster AI prototypers’ ability to independently identify harms. Thus, FARSIGHT

is designed to provide users with human agency and encourage users to actively and
critically think about harms.
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Figure 8.5: Three alert modes of the Alert Symbol.

G5. Open-source and adaptable implementation. Given the ever-expanding array of
LLMs and prompt-crafting tools [358], our approach in designing FARSIGHT is to
ensure it remains adaptable to this dynamically evolving landscape. We aimed to
design FARSIGHT to be model-agnostic and environment-agnostic, thereby making
it accessible to users of different LLM models (e.g., Gemini [330], GPT-4 [331],
Llama 2 [359]) and prompt-crafting interfaces (e.g., GPT Playground [332], Google
AI Studio [327], Wordflow [334]). Furthermore, we open source our implementation
to foster future advancements in the design, research, and development of responsible
AI tools.

8.3 User Interface

Following the five design goals (G1–G5), we present FARSIGHT, the first in situ interactive
tool that aims to foster responsible AI awareness among AI prototypers during the AI
prototyping process. FARSIGHT is designed to be a plugin of any web-based prompt-
crafting tools. FARSIGHT’s interface employs progressive disclosure [296], enabling users
to smoothly transition across three main components, with each phase increasing the level
of user engagement. The Alert Symbol (§ 8.3.1) presents an always-on symbol that shows
the approximated alert level of a user’s current prompt; the Awareness Sidebar (§ 8.3.2)
highlights news articles about related AI incidents and LLM-generated use cases and harms;
and the Harm Envisioner (§ 8.3.3) visualizes LLM-generated harms and allows users to
edit, add, and share harms. Examples in this section use PaLM 2 model through its APIs;
we chose this model because it provided free API access to the public during our design
process. Researchers and designers can easily replace PaLM 2 model with other LLMs by
changing the API endpoints in FARSIGHT.

8.3.1 Alert Symbol

The Alert Symbol is an always-on display on top of the AI prototyping tool, displaying the
alert level of a user’s prompt (Fig. 8.5). Every time the user runs their prompt, the Alert
Symbol updates the alert level using the new prompt. Based on the computed alert level, there
are three modes (Fig. 8.5), each characterized by a progressively more attention-grabbing
style. Thus, FARSIGHT only disrupts AI prototypers’ flow when their prompts require more
caution (G3).
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Figure 8.6: To evaluate our early FARSIGHT designs and generate more design ideas, we conducted a
co-design study (§ 8.2.1) with 10 AI prototypers. Participants were asked to use our very early-stage
design prototypes (shown in cells labeled with ) to envision potential harms associated with their
application while thinking aloud. Participants were also presented with low-fidelity sketches for our
other design ideas (shown in cells in the last row). The ratings of design ideas are in Fig. 8.4.

Calculating the Alert Level. Auditing and quantifying the societal risk of LLM-
powered applications is an open research problem [360]. To categorize the potential harms
that might arise from users’ prompts, we propose a novel technique that uses the similarity
between the prompt and previously documented AI incident reports as a proxy for the
prompt’s alert level. First, we use an LLM to extract high-dimensional latent representations
(embeddings) of all AI incident reports indexed in the AI Incident Database [348], which
includes more than 3k community-curated news reports about AI failures and harms. Then,
we extract the embedding of the user’s prompt and compute pairwise cosine distances
between the prompt embedding and AI incident report embeddings. We label each incident
report as , , based on two distance thresholds 0.69 and
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Figure 8.7: The Awareness Sidebar provides in situ information to remind AI prototypers of potential
risks. (A) Given a user’s current prompt, (B) the Incident Panel shows the (B1) latest and (B2) related
AI incident reports sampled from the AI Incident Database [348]. (B2) The related AI incident tab
is the default view, which uses text embedding similarities between the user’s prompt and all AI
incident reports to surface relevant reports. (C) The Use Case Panel leverages LLM to generate
potential use cases and harms. Each use case is classified by an LLM and organized into (C1)
intended, (C2) high-stakes, and (C3) misuse tabs.

0.75. We determine these two thresholds from an experiment with 1k random prompts.
Researchers can easily adjust these two thresholds to calibrate an article’s relevancy.

Finally, we show the numbers of AI incidents that are classified as in an
orange circle and in a red circle (Fig. 8.5) as a proxy of the prompt’s potential
risk. In other words, we consider a prompt to have a higher risk if many AI incident reports
are semantically and syntactically similar to it.

8.3.2 Awareness Sidebar

After a user clicks the Alert Symbol, the Awareness Sidebar (Fig. 8.7) expands from one side
edge of the AI prototyping tool (G3), highlighting potential consequences of AI applications
or features that are based on the user’s current prompt. We use a real prompt from Awesome
ChatGPT Prompts [361] in the example in Fig. 8.7.

Incident Panel. To encourage users to consider potential risks associated with their
prompts (Fig. 8.7A), the Incident Panel highlights news headlines of AI incidents that are
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relevant to the user’s prompt (Fig. 8.7-B2). These incidents comprise the top 30 incident
reports that are classified as or , sorted in reverse order based on
their embedding’s cosine distances to the embedding of the user’s prompt. The thumbnails
are color-coded based on the incident’s relevancy level. Users can click the headline or the
thumbnail to open the original incident report in a new tab. These real AI incidents can
function as cautionary tales [354, 82] reminding users of potential AI harms (G4).

Use Case Panel. To help users imagine how their AI prototype may be used in AI
applications or features (G1), the Use Case Panel (Fig. 8.7C) presents a diverse set of
potential use cases that are generated by an LLM. Each use case is shown as a sentence
describing how a particular group of end-users could use this AI application in a specific
context. For example, for a writing tutor prompt, a potential use case can be “teachers use it
to provide feedback on student writing.” (Fig. 8.7-C1). We also use an LLM to generate a
potential harm that could occur within that use case, shown below the use case sentence. For
example, a harm for the teacher feedback use case can be “students may feel like they are
not getting personalized feedback from their teachers.” We use few-shot learning to prompt
the LLM to generate use cases and harms, whereas we generate use cases, stakeholders, and
harms in Harm Envisioner (§ 8.3.3). We open-source all of our prompts.

To help users assess and organize use cases and harms (G2), we also leverage an LLM
to categorize each use case as , , or , although we acknowledge that
these may vary by use cases, development and deployment contexts, as well as relevant
policies or regulatory frameworks in various jurisdictions. These three categories are intro-
duced by responsible AI researchers to help ML developers structure their harm envisioning
process [355]. The use cases are those that align with the development target use
cases. The use cases encompass those that may arise in high-stakes domains, such
as medicine, finance, and the law. The category includes scenarios where malicious
actors exploit the AI application to cause harms. The Use Case Panel organizes use cases and
harms into three tabs (Fig. 8.7-C1–3) based on their categories. The first tab, “mix”, provides
an overview by showing one use case and its corresponding harm from each of the other tabs.

8.3.3 Harm Envisioner

Both the Alert Symbol and the Awareness Sidebar provide easy-to-understand in-context
reminders to help users reflect on potential harms associated with their prompts. However,
instead of passively reading AI incident reports and LLM-generated content, users desire
to actively edit and add new use cases, stakeholders, and harms (Fig. 8.4). Also, active
participation—a key factor in learning—may help foster AI prototypers’ ability to indepen-
dently identify harms. Therefore, we design Harm Envisioner (Fig. 8.8) to support users
in actively envisioning potential harms associated with their prompts (G4). We use a real
prompt from Awesome ChatGPT Prompts [361] in the example in Fig. 8.8.
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Figure 8.8: The Harm Envisioner helps AI prototypers envision harms associated with their AI
applications through human-AI collaboration. (A) Given a prompt, (B) FARSIGHT uses an LLM
to generate a summary of the prompt and asks users to revise it. (C) Then, the Harm Envisioner
presents an interactive node-link diagram to visualize use cases, stakeholders, and harms. Initially,
the Harm Envisioner only shows up to the Use Cases layer. (C1) Users can edit the node content
before asking AI to generate its children nodes by clicking . Users can edit any node and regenerate
its children at any time, and click a node to show or hide its descendants. (C2) Users can delete
unhelpful nodes. (C3) This view encourages users to think and add more harms by intermittently and
randomly alternating harm categories shown in empty harm nodes, such as “increased labor?”

Interactive Node-link Tree Visualization. After clicking the “Envision Consequences
& Harms” button in the Awareness Sidebar, Harm Envisioner appears as a pop-up window
on top of the prompt-crafting tool (Fig. 8.8). It begins with a text box filled with an LLM-
generated summary of a user’s prompt (Fig. 8.8B). The user is prompted to revise the
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Figure 8.9: Icons used to represent different harm types.

summary to align with the target task in their prompt. Next, the window transitions into an
interactive node-link tree visualization [349], where the user can pan and zoom to navigate
the view (Fig. 8.8C). First, the window shows the user’s prompt summary as the root of
the tree which is visualized as a text box. The user can click the root node and the LLM
will generate potential use cases of an AI application based on the user’s prompt, and the
use cases are visualized as the root’s children nodes. Similarly, users can click a generated
node and the LLM will generate its children nodes (stakeholders and then harms). There
is a max of four layers, following an order of the user’s prompt summary → use cases
→ stakeholders → harms. This layer order reflects the recommended harm envisioning
workflow in responsible AI literature [85, 355, 356, 354, 326] and helps users to comprehend
and organize diverse harms across different contexts (G2).

Human-AI Collaboration in Harm Envisioning. Our goal is to use AI-generated harms
to encourage users to reflect on potential downstream harms and inspire them to add, edit, or
curate potential harms (G4). To do that, Harm Envisioner allows users to edit any tree nodes
by clicking a button in the toolbar (Fig. 8.8-C1) or entering new text in the tree node. In
addition, users can delete (Fig. 8.8-C2) and use the LLM to regenerate all of an edited node’s
children nodes, to effectively steer the harm envisioning direction by offering feedback to the
LLM (G4). To meet users’ needs of categorizing harms (G2), we use an LLM to classify each
harm into a harm type based on a systematic review and taxonomy of AI harms [362]. Users
can use the dropdown menu to change the harm’s category (Fig. 8.9). To help users prioritize
and take notes about harms, the Harm Envisioner allows users to rate the severity of each
harm by clicking in the toolbar. Finally, users can click to export all content (e.g.,
use cases, stakeholders, and harms) in the Harm Envisioner as a Markdown file.

8.3.4 Open-source and Reusable Implementation

To make FARSIGHT easily adoptable by both AI prototypers and AI companies (G5), we
implement FARSIGHT to be model-agnostic and environment-agnostic, and we open-source
our implementation. FARSIGHT uses LLMs by calling their public APIs so that users can
use their preferred LLMs by easily replacing the API endpoints. To help AI companies
and researchers integrate FARSIGHT into AI prototyping tools, we leverage Web Compo-
nents [350] and Lit [363] to implement FARSIGHT as reusable modules, which can be easily
integrated into any web-based interfaces regardless of their development stacks (e.g., React,
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Vue, Svelte). To help AI prototypers use our tool, we present a Chrome extension2 that
integrates FARSIGHT into Google AI Studio and a Python package3 that brings FARSIGHT to
computational notebooks. We implement the interactive tree visualization using D3.js [180]
and embedding similarity computation using TensorFlow.js [179] with WebGL [351] accel-
eration. Computational notebook support is implemented using NOVA [206].

8.4 Usage Scenario

We present a hypothetical usage scenario to illustrate how FARSIGHT fosters responsible
awareness among AI prototypers. Rosa is a native English speaker from the United States
who recently traveled to Vietnam to teach English. She is the only English teacher at an
under-resourced high school. Overwhelmed with grading English writing assignments
for all students in the school, Rosa tries to develop an LLM-powered AI application that
provides writing feedback based on a student’s essay. She writes her prompt (Fig. 8.7A)
in an AI prototyping tool with FARSIGHT integrated. After running the prompt, Rosa
notices the alarming Alert Symbol (Fig. 8.7A), so she clicks on it, which expands the
Awareness Sidebar (Fig. 8.7-BC). Rosa reads a few related articles shown in the Incident
Panel (Fig. 8.7-B2). She finds these articles are indeed related to AI in education and are
helpful, but they mainly focus on students using AI to cheat rather than teachers using AI to
grade assignments. Rosa skims through the LLM-generated potential use cases and finds the
use case “teachers use it to provide feedback on student writing” very relatable (Fig. 8.7-C1).
Intrigued by its associated harm “students may feel like they are not getting personalized
feedback from their teachers”, Rosa clicks the Envision Consequences button and wishes to
learn more about this use case and its associated potential harms.

Harm envisioner. Next, FARSIGHT shows a pop-up window asking Rosa to revise and
confirm an LLM-generated summary of her prompt (Fig. 8.8-B). Clicking , Rosa sees the
Harm Envisioner presenting an interactive tree visualization showing the functionality of her
AI application as a root node and multiple use cases as its children nodes (Fig. 8.8-C). With
a map-like interface, Rosa quickly uses zoom-and-pan to zoom into the teaching use case.
After clicking , the Harm Envisioner quickly generates the stakeholders associated with the
use case and the harms associated with each stakeholder. Rosa takes some time to reflect on
the LLM-generated harm of students not getting personalized feedback (Fig. 8.8-Harm-1).
She has never thought about this consequence before, but she thinks it makes sense—AI
does not have background knowledge about each student, so its feedback would not be
tailored to students’ individual needs. After rating it as very severe by clicking , Rosa
continues reading other LLM-generated harms. She does not think the harm of teachers
losing jobs to her AI tutor is relevant, so she deletes it (Fig. 8.8-C2).

2FARSIGHT Chrome extension: https://github.com/PAIR-code/farsight/releases
3FARSIGHT Python package: https://pypi.org/project/farsight/
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Human-AI collaboration. After seeing the random question “increased labor?” next
to teacher (Fig. 8.8-C3), Rosa thinks maybe it will be more time-consuming to review AI-
generated feedback than grading students’ assignments herself, so she enters that harm into
the Harm Envisioner. Next, Rosa is not sure about the legal liability of her school (Fig. 8.8-
Harm-3), but it might be worth discussing with other teachers. Finally, reflecting on her
experience with the Harm Envisioner and AI incident articles, Rosa thinks the potential
harms of her writing tutor AI application outweigh the potential convenience for her. There-
fore, Rosa decides to stop prototyping this application. However, Rosa still sees value in
leveraging LLMs in education, so she bookmarks related AI incident articles and clicks

to download all the content in the Harm Envisioner as a Markdown file. She will
bring these resources to discuss with her colleagues the next day.

8.5 Evaluation User Study

We conducted a user study to evaluate FARSIGHT’s effectiveness in aiding AI prototypers
to anticipate the potential harms associated with AI features. In addition, we investigate
how AI prototypers use FARSIGHT during an early prototyping stage. To investigate the
effect of user engagement in AI-assisted harm envisioning, we tested two variants of our
tool: FARSIGHT, including all components, and FARSIGHT LITE, including only the Alert
Symbol (Fig. 8.2-B) and the Awareness Sidebar (Fig. 8.2-C). In other words, FARSIGHT

LITE is a “subset” of FARSIGHT. FARSIGHT LITE only shows one direct stakeholder for
each use case in the Use Case Panel, while FARSIGHT allows users to interactively add more
stakeholders, use cases, and harms in the Harm Envisioner (Fig. 8.2-A). The study included
42 AI prototypers with diverse roles who were recruited from a large technology company
based in the United States. In this user study, we aimed to investigate the following three
research questions:

RQ1. How do FARSIGHT and FARSIGHT LITE affect users’ ability for and approach to
identifying potential harms?

RQ2. How effective and useful are FARSIGHT and FARSIGHT LITE in assisting users in
envisioning harms in comparison to existing commonly-used resources?

RQ3. What challenges do AI prototypers face when envisioning potential harms during the
AI prototyping stage? How do FARSIGHT and FARSIGHT LITE help AI prototypers
address these challenges?

8.5.1 Participants

We recruited 45 voluntary participants from both internal mailing lists related to AI and
snowball sampling at Google, based in the United States. The recruitment required partici-
pants to have experience in writing prompts for LLMs. In total, we received 61 responses,
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Table 8.2: The evaluation user study included 42 participants with diverse roles and experi-
ence in prompting LLMs.

Participant Roles Participant IDs

Software Engineer 3, 4, 5, 6, 7, 12, 13, 15, 16, 17, 19, 23, 25,
26, 28, 29, 33, 34, 35, 41, 42

Product Manager 1, 8, 10, 11, 14, 20, 24, 27, 36
Linguist 2, 21, 30, 31
AI Researcher 9, 18, 39, 40
UX Researcher 22
Data Scientist 32
Test Engineer 37
Marketing Specialist 38

Figure 8.10: Participants reported diverse levels of familiarity with responsible AI (top, average=2.55)
and prompting (bottom, average=2.81) on 5-point Likert scales.

and we selected 45 participants based on their schedule availability. We conducted pilot
studies using the first three study sessions, which were not included in our data analysis. As
a result, we had a total of 42 participants. Each study session was either 90 minutes (n=28
sessions) or 60 minutes (n=14 sessions), depending on the participants’ availability. During
the 90-minute sessions (or 60-minute sessions), each participant received an average of $62
USD (or $41) compensation in their preferred form such as gift cards and charity credits.

Among the 42 participants, 26 identified as men, 14 as women, and 2 preferred not to
disclose their gender. Information about their job roles is listed in Table 8.2. Recruited
participants self-reported an average score of 2.55 for their knowledge and experience with
responsible AI on a 5-point Likert scale (Fig. 8.10-top), where 1 represents “No experience”
and 5 represents “Expert (I have helped others apply responsible AI practices).” In addition,
participants self-reported an average score of 2.81 for experience with LLM prompting on
a 5-point Likert scale (Fig. 8.10-bottom), where 1 represents “Beginner” and 5 represents
“Expert.” All participants are FARSIGHT’s targeted users, AI prototypers.
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Figure 8.11: The evaluation study included six conditions with different variations of harm envision-
ing tools (FARSIGHT, FARSIGHT LITE, and the baseline ENVISIONING GUIDE). Participants were
asked to envision potential harms associated with an AI feature (e.g., email summarizer) in each
harm-envisioning activity (H1, H2, H3, and H4). Participants had access to a harm envisioning tool
in H2 and H4. The duration of sessions involving H4 and interview 2 was 90 minutes, while all other
sessions lasted 60 minutes. Participants were randomly assigned to a condition, taking into account
their availability for study session duration.

8.5.2 Study Design

We conducted this study with participants one-on-one. Out of 42 sessions, 2 were conducted
in-person, and 40 were through video conferencing software due to office locations and
participants’ scheduling constraints. With the permission of all participants, we recorded the
participants’ audio and computer screen for subsequent analysis. To start, each participant
signed a consent form and filled out a survey regarding their familiarity with responsible
AI and LLM prompting (Fig. 8.10). Then, participants were randomly assigned to one
of six conditions taking into account their time availability: CFG, CF , CLG, CL, CGF ,
CGL (Fig. 8.11). C stands for the study condition, CFG means that participants used
FARSIGHT first and then ENVISIONING GUIDE, and CL means that participants only used
FARSIGHT LITE—the other acronyms follow this same pattern. Sessions of CF and CL were
scheduled for 60 minutes each, while the remaining sessions were allotted 90 minutes each.
We assigned 7 participants to each condition, as this was the maximum number that allowed
for an equal distribution of participants across all conditions, given the time constraints and
the availability of the 61 individuals who signed up for the study.

Our study followed a mixed design that combines both between-subjects and within-
subjects designs [364]. Each session included three or four harm-envisioning activities,
denoted as H1, H2, H3, and H4 (§ 8.5.2.2), as well as one or two semi-structured interviews
to collect participants’ feedback (§ 8.5.2.3). In each harm-envisioning activity, participants
were asked to envision potential harms associated with a particular AI feature while thinking
aloud (Fig. 8.11). In H1 and H3, participants envisioned harms on their own, whereas in H2
and H4, they could use a harm envisioning tool we assigned them based on their study condi-
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Figure 8.12: In the evaluation user study, we compared our tools against ENVISIONING GUIDE, a
combination of existing harm envisioning resources. This ENVISIONING GUIDE was presented to
participants as a Google Doc with three sections. (A) The harm modeling workflow table comes from
Microsoft’s Harm Modeling Practice [326], providing a four-step process to envision harms. (B)
The harm modeling prompts from the Harm Modeling Practice [326] offer templates and questions
to help users envision different stakeholders and use cases (not all content is displayed here). (C)
The harm taxonomy [362] helps participants explore the space of potential harms by providing a
comprehensive list of 20 harm categories organized into five themes (not all content is displayed
here). Participants could click the icon to see the definition of each harm category.

tion (e.g., FARSIGHT, FARSIGHT LITE, or ENVISIONING GUIDE). All collected harms were
rated by seven researchers with experience with responsible AI evaluations, who assigned
each potential harm numeric scores in terms of their likelihood and severity (§ 8.5.2.4).
We compared the envisioned harms in H1 and H3 (between-subjects) to investigate how
different tools affect users’ ability and approach to anticipating harms (RQ1). We compared
the envisioned harms in H2 and H4 (within-subjects) to assess the effectiveness of different
tools in helping users envision harms (RQ2). Besides the quantitative data on the number
and ratings of potential harms, we also collected qualitative data from think-aloud and two
interviews (RQ1–RQ3). We incorporated 60-minute sessions (CF and CL) into our study
design due to challenges in recruiting participants available for a 90-minute duration.

8.5.2.1 Baseline Harm Envisioning Tool.

To compare our work against current responsible AI workflows, we created a baseline inter-
vention ENVISIONING GUIDE: a combination of Microsoft’s Harm Modeling Practice [326]
and the Harm Taxonomy from Shelby et al. These two resources are the latest and the most
representative resources designed to help practitioners envision harms. We combined them
because (1) we aim to simulate the current practice where AI prototypers can choose from
various existing harm envisioning tools, and (2) we do not intend to study the causal effects
of any specific resource. We administered this intervention by providing a Google Doc
containing a detailed table and information from these resources (Fig. 8.12). Both resources
were designed to help technology developers and researchers anticipate and prevent negative
societal impacts of their technology innovations.
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8.5.2.2 Harm Envisioning Activities

Depending on the conditions, the study included three or four harm envisioning activi-
ties (H1–H4). Within each harm envisioning activity, participants were presented with a
description of an AI feature and the prompt that generated that feature. We chose the four
AI features (Fig. 8.11) based on a qualitative analysis of 100 randomly sampled internal
prompts written by real AI prototypers. These four features are representative of popular
LLM tasks (e.g., summarization, classification, and question answering) and comprehensible
to participants with diverse roles. In H1 and H3, participants independently envisioned
harms, whereas in H2 and H4, they were provided with a harm envisioning assistance tool
(e.g., FARSIGHT, FARSIGHT LITE, or ENVISIONING GUIDE). To emulate AI prototyping
workflows, we asked participants to perform simple prompt engineering tasks in H2 and H4
before envisioning potential harms of presented AI features.

For each harm, participants were instructed to describe who would be affected (i.e., the
stakeholders) and how the stakeholder might be harmed. We provided a harm example for a
code generation AI feature: “App end-users might face financial loss due to AI-introduced
software vulnerabilities.” During the process, participants were asked to share their screens
and verbalize their thoughts. They were also asked to enter their envisioned harms into a
Google Doc table featuring a who column and a how column. Moreover, participants had
the option to articulate the harm verbally, and we transcribed it into the table. At the end
of each harm envisioning activity, we reviewed the table together with the participants to
ensure the accuracy of the harm descriptions. Participants were instructed to achieve three
objectives: (1) envision as many harms as possible; (2) envision the most likely harms; and
(3) envision the most severe harms.

H1: Pre-task. To understand how participants independently envision potential harms
before using the tool, as a baseline for RQ1, participants were asked to anticipate potential
harms concerning an LLM-powered email summarizer on their own (Fig. 8.11). They
received information about the AI functionality: “Shorten and improve a user’s email”,
a development context, and a prompt that enables this functionality. The duration of this
activity was limited to 10 minutes.

H2: Intervention. In the second harm envisioning activity, we asked participants
to use different harm envisioning assistant tools. Depending on the assigned condition, a
participant could use FARSIGHT (CFG, CF ), FARSIGHT LITE (CLG, CL), or ENVISIONING

GUIDE (CGF , CGL) to help them anticipate harms. The activity began with a tutorial on the
designated tool. The AI feature used in this activity was an LLM-powered toxicity classi-
fier (Fig. 8.11). Participants received information regarding the AI functionality “Detect
toxic text content,” a development context, and a prompt that enables this AI functionality.
To emulate AI prototyping workflows, we also tasked participants with a simple prompt
engineering assignment.
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After completing prompt engineering, participants envisioned harms linked to the toxicity
classifier. They were instructed to freely use the assigned tools while sharing their screens
and thinking aloud. For participants assigned with ENVISIONING GUIDE (CGF , CGL),
the process of entering envisioned harms was the same as H1. Participants assigned with
FARSIGHT (CFG, CF ) or FARSIGHT LITE (CLG, CL) could click a button in the tools to
export all harms as a text file. The export included both AI-generated harms and harms
added or modified by participants. Participants were asked to copy the harms into the Google
Doc. As a significant portion of these harms were generated by AI, we asked participants to
select harms that (1) they agreed with and (2) would report to their colleagues and managers.
Also, participants were welcome to add more harms to the table. For our analysis, we only
included the exported harms that participants had selected and added to the table. The
duration of this activity was limited to 25 minutes.

H3: Post-task. To understand how the intervention may have affected participants’
ability to independently envision harms (RQ1), we asked participants to envision harms
associated with an LLM-powered article summarizer on their own (Fig. 8.11). To ensure
a valid comparison between the envisioned harms and participants’ approaches to the
pre-task (H1), we introduced a parallel AI summarizer feature in this activity that was
isomorphic to the pre-task [365]. In particular, to deter participants from directly reusing
their envisioned harms from H1, we replaced the email summarizer in H1 with an article
summarizer. The AI functionality was described as “Summarize an article in one sentence”.
The duration of this activity was limited to 10 minutes.

H4: Alternative. To assess the effectiveness and usefulness of FARSIGHT and FAR-
SIGHT LITE in comparison to ENVISIONING GUIDE (RQ2) and study the usage patterns
of different tools (RQ3), n = 28 participants engaged in 90-minute sessions (CFG, CLG,
CGF , and CGL) to envision harms using a tool different from the one used in H2 (Fig. 8.11).
Participants were asked to envision potential harms associated with an LLM-powered math
tutor app with the AI functionality “Answer math-related questions”, a development context,
and a prompt. The procedure for this activity paralleled H2, including a tutorial, prompt en-
gineering exercise, and harm envisioning. This activity’s duration was limited to 25 minutes.

8.5.2.3 Semi-structured Interviews

This study included two semi-structured interview sessions (Fig. 8.11). The first interview
took place after the post-task activity (H3), where we asked participants to reflect on their pro-
cess for anticipating potential harms during the LLM prototyping process, and how their ap-
proach may have changed after the intervention (RQ1). We also asked participants about their
challenges in harm anticipation, their experiences of using harm envisioning tools, and poten-
tial actions they would take to address the identified harms (RQ3). After participants in 90-
minute sessions (CFG, CLG, CGF , and CGL) finished H4, we asked them to compare and rate
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the usefulness and usability of the two tools they had used in this study (RQ2). We also asked
them to rate the helpfulness of different components in the tools on a 5-point Likert scale.

8.5.2.4 Harm Rating

After completing all 42 study sessions, we recruited seven raters to rate all 989 harms
collected in H1–H4 to evaluate participants’ ability to envision harms. These seven raters
included four of the paper authors and three industry researchers; all raters had experience
with responsible AI (unlike many of the participants)—either as responsible AI researchers,
developers of responsible AI tools or playbooks, or in a consultant role on responsible AI for
product teams. Ideally, evaluations of identified harms would involve both domain experts
for the domain in question (e.g., education) and/or stakeholders from demographic groups
or communities who may be likely to experience those harms. For this preliminary study,
due to timing and resource constraints, we recruited responsible AI researchers as raters
instead of specific domain experts or people impacted by AI applications. The limitations of
this approach are further discussed in § 8.5.7 and § 8.6.2.

Our collected harms were either (1) directly envisioned by participants or (2) exported
from FARSIGHT or FARSIGHT LITE and subsequently curated by participants during H2
and H4. Each harm included the impacted stakeholders and a description of the harm. After
removing duplicates and random shuffling, we randomly and evenly assigned harms to
raters via spreadsheet format. Raters had access to the details of the intended AI feature of
each harm, including the prompt and the context of the AI feature. To prevent the raters
from being influenced by our hypotheses, we did not include the experimental conditions
in the rating sheet. In other words, raters did not know if a harm was from a FARSIGHT

user, a FARSIGHT LITE user, or a ENVISIONING GUIDE user. To mitigate rating noise,
we designated three raters for each harm. As identifying likely and severe harms is often
an objective in AI harm envisioning exercises [326, 366], we asked raters to rate each
harm’s likelihood and severity on a 4-point Likert scale (strongly agree, agree, disagree, and
strongly disagree to statements “This harm is likely to occur for this stakeholder” and “This
harm will severely impact this stakeholder”). Raters could also choose an N/A option if they
perceived a rating was not applicable for that feature or use case. During data analysis, we
numericalized these four categories as ordinal scores: 1, 2, 3, 4 and removed N/As.

8.5.3 Data Analysis

We applied a mixed-methods approach for data analysis. First, we conducted a quan-
titative analysis (§ 8.5.3.1) on the changes in participants’ ability to envision harms by
comparing pre-task H1 to post-task H3 responses (RQ1). We also quantitatively assess
three different tools’ effectiveness in helping users anticipate harms by comparing H2 and
H4 responses (RQ2). The quantitative analyses involved metrics such as the total number
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Figure 8.13: To evaluate how different interventions (FARSIGHT, FARSIGHT LITE, ENVISIONING

GUIDE) affect users’ ability to envision harms independently, we conducted one-sample t-tests with
Bonferroni correction to examine the difference in the (A) count, (B) average likelihood, and (C)
average severity of participant-identified harms between H3 and H1. Each intervention had n = 14
participants, represented by 14 points on the chart. The charts also indicated the 95% confidence
intervals, adjusted with Bonferroni correction. The results highlighted that after using FARSIGHT and
FARSIGHT LITE, users could anticipate a significantly higher number of harms, while the average
likelihood and severity of identified harms remained the same.

of envisioned harms, as well as the average likelihood and severity ratings of envisioned
harms across 3 raters. Next, we performed a qualitative analysis (§ 8.5.3.2) on transcripts
from think-aloud sessions and interviews to further investigate participants’ strategies and
challenges in envisioning harms, and usage patterns of different tools (RQ1–RQ3).

8.5.3.1 Quantitative Analysis.

We first conducted quantitative analyses on the count, likelihood, and severity of harms
across different conditions to evaluate the effectiveness of our tools (RQ1, RQ2). We
measured the likelihood and severity for each harm using the average of ratings from three
raters after removing any N/As. The average pairwise weighted Cohen’s kappas [367, 368]
for likelihood and severity ratings are 0.14 and 0.09. These values fall within the range
of slight agreement [369]. We discuss this relatively low inter-rater agreement in § 8.6.2.
The Shapiro-Wilk normality tests [370] show all measures, except for the changes of harm
count between H1 and H3 with ENVISIONING GUIDE, follow a normal distribution. We
used t-tests with Bonferroni corrections for multiple hypothesis testing.

We also analyzed participants’ ratings of the tools’ usefulness and usability when
comparing the two tools used in the study (RQ2, Fig. 8.5.5.3). We converted the 5-point
Likert scale ratings into numerical values and assessed the difference between ratings of
our tools and ENVISIONING GUIDE using Mann-Whitney U tests [371]. Considering that
most of the ratings did not exhibit a normal distribution, we chose to use Mann-Whitney U
tests, as these tests do not assume normality in the data. See Fig. 8.5.5.3 for discussion of
the findings from these questions about usefulness and usability.
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8.5.3.2 Qualitative Analysis.

We conducted a qualitative analysis on the screen recordings and transcripts of the study
sessions that include participants’ verbalized thoughts during the harm envisioning activi-
ties (H1–H4) and interviews. All study sessions were screen-recorded and audio-recorded,
with the audio subsequently transcribed by the video conferencing software. We adopted an
inductive thematic analysis approach [372, 373] and open coded the 56-hour-long transcripts
using the qualitative analysis software Dovetail [374]. After generating a codebook, we
applied deductive coding [372] to assign harm envisioning patterns to each participant
during H1 and H3 (RQ1, § 8.5.4.2).

8.5.4 Findings: Changes in Users’ Envisioning Ability and Approach (RQ1)

In the study, participants were asked to independently envision harms associated with
an email summarizer (H1) and an article summarizer (H3) before and after using a harm
envisioning tool (FARSIGHT, FARSIGHT LITE, or ENVISIONING GUIDE) to anticipate harms
for a toxicity classifier (H2). We quantitatively and qualitatively compared participants’
envisioned harms and approaches in H1 and H3 across different conditions in H2.

8.5.4.1 FARSIGHT and FARSIGHT LITE Improved Users’ Ability to Envision Harms.

For each participant, we compared the count, average likelihood, and average severity of
their independently envisioned harms before (H1) and after (H3) the intervention (Fig. 8.13).
Using paired sample t-tests with Bonferroni correction [375], we found that after using
FARSIGHT and FARSIGHT LITE, users could envision significantly more harms on their
own (p = 0.0028, p = 0.0003), showing an average increase of 2.42 and 3.00 harms,
respectively. The effect sizes, as measured by Cohen’s d [376], were d = 1.21 and d = 1.27,
indicating a very large effect [377]. On the contrary, for participants using ENVISIONING

GUIDE, the average count of identified harms experienced a marginal decrease (−0.14). We
hypothesize that the observation of three participants identifying fewer harms after using
ENVISIONING GUIDE (see the outliers in Fig. 8.13 A) is because ENVISIONING GUIDE had
a high cognitive load. The high cognitive load may have resulted in these three participants
having less energy to envision harms in H3 compared to H1. Changes in the average likeli-
hood and average severity, on the other hand, were not statistically significant for any of the
interventions (Fig. 8.13-BC). Our finding implies that after using FARSIGHT and FARSIGHT

LITE, users could anticipate a greater number of harms linked to AI features independently,
while the average likelihood and severity of identified harms remained unaltered.
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Table 8.3: We identified six non-exclusive common patterns in independent harm envisioning
by analyzing transcripts of participants’ think-aloud process during H1 and H3.

Harm Envisioning Pattern Description

Failure-mode-driven envisioning Participants envisioned harm by initially considering
the AI feature’s failure modes (e.g., wrong summa-
rization), limitations of LLMs (e.g., hallucination),
or vulnerabilities within system implementation (e.g.,
data storage). This pattern is similar to a Failure
Mode and Effects Analysis [378].

Usage-driven envisioning Participants envisioned harm by initially considering
who may be impacted through this feature and in
what usage scenario, such as students using the arti-
cle summarizer for completing assignments. Then,
participants envisioned potential harms that might im-
pact the stakeholders within the identified scenario.

Consider high-stakes uses Participants deliberately thought about high-stakes
use cases of the AI feature, such as being used in
medical, financial, and legal domains.

Consider misuses Participants deliberately envisioned potential misuse
of the AI feature, where malicious actors like scam-
mers and hackers could exploit this AI feature to
cause harm.

Consider indirect stakeholders Participants deliberately brainstormed stakeholders
indirectly impacted by the AI feature, such as people
who did not use the AI tools, individuals mentioned
in the input text, and society at large.

Consider cascading harms Participants deliberately considered (1) harms that
could result from other harms, such as productivity
loss due to AI errors can lead to economic loss; or
(2) harms that might occur even when the AI feature
operated as expected, such as students using AI to
cheat in homework.

8.5.4.2 Changes in Harm Envisioning Approaches.

We also investigated the impacts of different tools on participants’ approaches to harm envi-
sioning by analyzing their self-reports in interview 1 and the think-aloud data in H1 and H3.

Self-reported changes after using FARSIGHT and FARSIGHT LITE. The major
themes of self-reported changes are similar between FARSIGHT and FARSIGHT LITE. A
large number of participants noted that while they initially considered the AI feature and
its potential harms in a general sense during H1, they shifted towards a more focused
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consideration of specific use cases and stakeholders in H3 (e.g., P23, P34, P38). Some
participants highlighted they started to brainstorm potential misuses in H3 (P25, P32). For
stakeholders, participants broadened their consideration to people and organizations not
initially considered during H1. P40 acknowledged a transition from a focus on “protecting
the AI company” in H1 to considering end-users in H3. Similarly, P17 reported a focus on
end-users after using FARSIGHT:

“Earlier maybe I was coming towards it from a very engineering or a very
broad feature perspective. The third time, I was thinking more about people who
were actually using the product and getting affected. So I was thinking more for
the people using it, rather than that being a feature in some application.” (P17)

Many participants also highlighted that they began to adopt the frameworks presented
in FARSIGHT and FARSIGHT LITE (e.g., P9, P10, P32) to structure their harm envisioning
procedures. For example, P10 and P32 appreciated the categorization of use cases, and
they reported considering intended uses, high-stakes uses, and misuses in H3. After us-
ing FARSIGHT, P9 said they followed the sequence of layers in the tree visualization to
conceptualize use cases, stakeholders, and harms:

“I found that sort of flow from identifying potential use cases, then identifying
stakeholders of those use cases, then identifying potential harms for each of
the stakeholders to be really valuable. That’s a great way to scaffold it and
think through the flow rather than just sort of bouncing around, which is what I
had been doing [in H1]. So yeah, I found that super valuable that has changed
the way that I think about it. And that’s the framework that I’ll use in the
future.” (P21)

Self-reported changes after using ENVISIONING GUIDE. Many participants using
ENVISIONING GUIDE in H2 (CGF , CGL) also noted shifts in their approaches to envisioning
harms. Several participants noted that they started to follow the structure outlined in the
Harm Modeling Guide to envision harms (P8, P40, P42). Some participants started thinking
more about under-represented social groups in H3 (P8, P31). Furthermore, many participants
described the harm taxonomy as a “mental checklist” that provided them with a language
to articulate and think about harms (e.g., P6, P14, P31).

Observed changes in envisioning approaches. By analyzing transcripts of participants’
think-aloud process during the harm envisioning activities in H1 and H3, we identified six
non-exclusive common patterns in harm anticipation (Table 8.3). Then, we examined the
effects of different interventions on participants’ envisioning patterns by comparing the
number of participants who applied and did not apply these six patterns in H1 and H3 across
interventions (Fig. 8.14). The intervention assignment is random.
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Figure 8.14: By analyzing transcripts of 42 participants during the pre-task (H1) and post-task (H3)
harm envisioning activities, we identified six non-exclusive common patterns in envisioning harms.
This bar chart compares the number of participants who applied and did not apply these patterns
before and after the three interventions. Note that there were 14 random participants for each
intervention, and the initial number of participants applying certain patterns could differ. The chart
highlights that both FARSIGHT and FARSIGHT LITE encouraged participants to consider how the AI
feature would be used. Notably, the use of FARSIGHT particularly influenced participants to think
more about indirect stakeholders and cascading harms.

Interestingly, the counts of participants who applied each pattern in H1 were consistent
across interventions, with the exception of FARSIGHT LITE where notably more participants
considered indirect stakeholders in H1 (Fig. 8.14-5). Before the interventions, the majority
of participants relied on failure-mode-driven envisioning when anticipating harms (Fig. 8.14-
1), focusing on the AI feature’s limitation, failure modes, and technical implementation
details. This observation corroborates participants’ self-reported envisioning approaches,
where participants like P17 acknowledged having a “very engineering or a very broad
feature perspective” in H1.

After the intervention, we observed that all three harm envisioning tools (FARSIGHT,
FARSIGHT LITE, and ENVISIONING GUIDE) influenced participants to adopt a usage-driven
envisioning approach when independently envisioning harms (Fig. 8.14-2). Particularly,
FARSIGHT had the most pronounced effect, followed by FARSIGHT LITE and then ENVI-
SIONING GUIDE. All these tools encouraged participants to think more about high-stakes
uses (Fig. 8.14-3) and indirect stakeholders (Fig. 8.14-5). Both FARSIGHT and FARSIGHT

LITE exerted a stronger influence on considering misuses (Fig. 8.14-4) and cascading
harms (Fig. 8.14-6) compared to ENVISIONING GUIDE. However, ENVISIONING GUIDE

had slightly more impact than FARSIGHT LITE in encouraging consideration of high-stakes
uses (Fig. 8.14-3) and indirect stakeholders (Fig. 8.14-5).

Interestingly, FARSIGHT had a notably more pronounced effect in leading participants
to consider indirect stakeholders (Fig. 8.14-5) and cascading harms (Fig. 8.14-6) than
the other tools. For indirect stakeholders, a possible explanation is that during H2, many
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Figure 8.15: To evaluate the effectiveness of our tools in helping users anticipate harms, we conducted
paired t-tests with Bonferroni correction to compare our tools (FARSIGHT, FARSIGHT LITE) against
the baseline ENVISIONING GUIDE based on the (A) count, (B) average likelihood, and (C) average
severity of harms collected in H2 and H4. In each comparison, such as FARSIGHT vs ENVISIONING

GUIDE, n = 14 participants (each shown as two connected dots) used both tools: 7 of them started
with FARSIGHT in H2, and the remaining 7 began with ENVISIONING GUIDE. The charts also
highlighted the mean and standard deviation of all measures. The results showed that FARSIGHT

and FARSIGHT LITE were effective in assisting users to anticipate a significantly greater number of
harms compared to existing resources, while the quality of the identified harms remained consistent.

participants encountered unexpected indirect stakeholders revealed by FARSIGHT (§ 8.5.5.2).
Consequently, these participants consciously began to consider stakeholders that might
seem tangential but could be influenced by the AI feature in H3. This hypothesis could also
explain the relatively weaker effect of FARSIGHT LITE in fostering consideration of indirect
stakeholders, as FARSIGHT LITE had only identified one direct stakeholder for each use
case, and participants could not use AI to generate more stakeholders.

For cascading harms, we hypothesize two potential explanations. First, many participants
applied a reviewing approach when engaging with AI-generated harms in FARSIGHT and
FARSIGHT LITE, where they tried to understand and make sense of these harms. In H2,
reviewing existing harms prompted participants to consider cascading harms that might
arise from other harms (§ 8.5.5.2). This experience could have influenced participants to
also consider cascading harms in H3. The second explanation is that many participants were
surprised by unexpected AI-generated cascading harms in H2 (§ 8.5.5.2), which might have
led them to consciously think about these harms in H3.

8.5.5 Findings: FARSIGHT’s Effectiveness in Assisting Harm Envisioning (RQ2)

In addition to assessing the impacts of different harm envisioning tools on users’ ability to
independently envision harms, we also evaluated the tools’ effectiveness in aiding users to
anticipate harms. Specifically, we quantitatively compared participants’ envisioned harms
when using different harm envisioning tools in H2 and H4. Furthermore, we qualitatively
analyzed participants’ usage patterns, interview responses, and survey data.

134



8.5.5.1 FARSIGHT and FARSIGHT LITE helped users envision more harms.

We compared the count, average likelihood, and average severity of harms collected in H2
and H4 using our tools, FARSIGHT and FARSIGHT LITE, against the baseline ENVISIONING

GUIDE (Fig. 8.15). These harms were identified by participants using different harm en-
visioning tools or generated by AI and selected by the participants. This analysis followed a
within-subjects approach, including 28 participants from CFG, CGF , CLG, and CGL. In each
comparison, such as FARSIGHT vs ENVISIONING GUIDE, a total of 14 participants used both
tools, with 7 of them starting with FARSIGHT in H2 (CFG), and the remaining 7 beginning
with ENVISIONING GUIDE (CGF ). Results from paired t-tests, adjusted with Bonferroni
correction, highlighted that participants using FARSIGHT and FARSIGHT LITE resulted in
a significantly higher number of harms compared to those using ENVISIONING GUIDE (p =

0.0018, p = 0.0034), with an average difference in the count of 4 (Fig. 8.15A). The effect
sizes, as measured by Cohen’s d, were d = 1.57 and d = 1.48, indicating a very large effect.
However, no significant differences were observed regarding the likelihood and severity of
identified harms between our tools and ENVISIONING GUIDE (Fig. 8.15-BC). Our findings
suggest that our tools are effective in assisting users to identify a greater number of harms
compared to existing resources, while the quality of the identified harms remains consistent.

8.5.5.2 Usage patterns.

We summarized how participants use FARSIGHT and FARSIGHT LITE in H2 and H4.

Trying to understand (unexpected) AI-generated content. Upon encountering AI-
generated content (e.g., use cases, stakeholders, and harms), participants first sought to (1)
understand why AI had generated it and then (2) assess its likelihood and relevance to their AI
application. For example, for the toxicity classifier in H2, FARSIGHT and FARSIGHT LITE

sometimes would generate a use case “HR departments use it to screen job applicants for
toxic behaviors.” This use case was usually unexpected to participants and provoked them to
think how an HR department could employ a toxicity classifier. Some participants imagined
that the HR could use this classifier on applicants’ social media to identify red flags (e.g., P10,
P11, P29), while others could only see it being used on applicants’ cover letters (P4). Partic-
ipants then assessed how likely and relevant is this scenario before diving into related harms.

Subjectivity in apprehending auto-generated content. We observed that based on
participants’ prior experiences, they could have very different views on auto-generated
content in FARSIGHT. For example, participants had different perceptions of how their
companies’ HR division might use a toxicity classifier (e.g., applying the classifier to job
applicants’ social media content or their application material). Also, for the toxicity classifier
in H2, the Incident Panel would often show an incident report on biases in sentiment analysis
tools. While some participants could quickly make the connection between sentiment
analysis and toxicity classification and reflect on biases in toxicity classifiers (P10, P36),
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others would overlook this incident (P19, P38).
In some cases, participants’ disagreement came from their different definitions of harm.

For example, in both H2 and H4, our tools would generate potential harms for people who do
not use the AI applications, such as “students who do not use the math tutoring app may feel
left behind.” Some participants perceived these harms as crucial considerations for assessing
the impacts of AI applications (e.g., P6, P18, P30), while others argue against considering
harms when an AI feature is absent (e.g., P4, P9, P13). We discuss the implications of
subjectivity and rater disagreement in harm envisioning in § 8.6.2.

Sparked to brainstorm new harms. The content in FARSIGHT and FARSIGHT LITE

often inspired participants to brainstorm new use cases, stakeholders, and harms. After
seeing an AI-generated stakeholder, many participants could quickly identify potential
harms for that stakeholder. For instance, seeing the stakeholder teachers in the math tutoring
app in H4, P22 added a new harm that teachers may struggle to integrate this tool into their
existing teaching workflows. Many participants also came up with new harms by making
connections across different AI-generated use cases, stakeholders, and harms. For example,
FARSIGHT anticipated two use cases for the toxicity classifier: (1) online moderators using
it to identify toxic content, and (2) hate groups using it to recruit people. P2 connected both
use cases and added a new harm: “online moderators could face death threats from hate
groups who feel their speech is censored.”

Thinking beyond immediate harms. Instead of starting with a blank slate, our
tools provided participants with initial materials that prompted them to think beyond the
immediate harms and envision cascading repercussions. For example, after seeing the AI-
generated harm “job applicants might be unfairly rejected” within the context of HR using a
toxicity classifier to screen job applicants, P38 quickly thought of a cascading harm—the
company’s diversity hiring effort could be harmed, as the toxicity classifier was more likely
to misclassify and reject under-represented social groups. Similarly, P18 recognized in the
long run, the hiring company could lose money due to the exclusion of qualified candidates
caused by a biased toxicity classifier. This usage pattern might explain the increase of
participants, who used FARSIGHT and FARSIGHT LITE in H2, independently envisioning
cascading harms in H3 (Fig. 8.14-6).

Thinking about mitigation strategies. Interestingly, after seeing AI-generated harms,
many participants voluntarily considered actions and strategies to take after envisioning
harms. For example, after seeing AI-generated harms for the toxicity classifier, P15 and
P16 noted that it was important to allow impacted stakeholders to appeal if their content
was removed because of the classifier. Similarly, P27 and P40 noted that people should
implement a human review process if the toxicity classifier was used to remove social media
content. Interacting with FARSIGHT and FARSIGHT LITE also encouraged participants to
reflect on their prompting workflows. For example, P29 and P37 mentioned that the AI
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Figure 8.16: Average ratings from 28 participants, comparing the usefulness and usability of
FARSIGHT and FARSIGHT LITE to ENVISIONING GUIDE. Both of our tools were preferred and
perceived as more helpful, easier to use, and more enjoyable than the existing resources. Each
comparison involved 14 participants who used one of our tools and ENVISIONING GUIDE in random
order. We use an asterisk (∗) to denote statistically significant rating differences, determined by
Mann-Whitney U tests with Bonferroni correction. We used Mann-Whitney U tests instead of t-tests
due to the non-normal distribution of many ratings.

Figure 8.17: Average ratings of envisioning tool features.

prototypers should start collecting good and diverse toxicity examples to improve the prompt
through few-shot prompting. P2 noted that they would like to add additional instructions
in their prompt to safeguard against biased output and potential data leakage. Finally, after
envisioning more harms, P2 mentioned that they would rethink if it was worth continuing to
prototype or develop this AI feature.

8.5.5.3 Our tools were usable, useful, and preferred by users.

We asked participants who had used one of our tools and ENVISIONING GUIDE (CFG, CGF ,
CLG, CGL) to compare and rate the usefulness and usability of the tools they had used on a
5-point Likert-scale. By comparing their ratings, we found both FARSIGHT and FARSIGHT

LITE were preferred and considered as more helpful, easier to use, and more enjoyable
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compared to ENVISIONING GUIDE (Fig. 8.16). Both tools had significantly higher ratings
on “easy to use” than the baseline (p = 0.0384, p = 0.0260). In addition, FARSIGHT was
rated significantly more helpful than the baseline (Fig. 8.16A), while FARSIGHT LITE was
more enjoyable (Fig. 8.16B). The effect sizes of significant results, as measured by the
common language effect size [379], were all above 0.7, indicating a large effect.

Usefulness of different features. Besides comparing the two tools, participants also
rated the usefulness of specific features in each tool. The average ratings are shown
in Fig. 8.17. All features in our tools were rated favorably (Fig. 8.17-AB). For FARSIGHT,
participants especially liked the interactive tree visualization. For example, P6 commented,
“This tree makes a lot of sense. This is how I think about it in my brain as well.” Similarly, P16
appreciated the progressive disclosure in the visualization: “I’m able to not get overwhelmed
by everything all at once.” The rating for the AI incident panel (in both FARSIGHT and
FARSIGHT LITE) is relatively lower than other features. Participants explained that the
surfaced incidents were not very relevant to their prompts (P39, P41), and the feature would
require them to take time to read external articles (P24, P39).

8.5.6 Findings: FARSIGHT’s Role in Overcoming Harm Envisioning Challenges (RQ3)

After completing the post-task (H3), participants were asked to reflect on the biggest
challenges encountered in envisioning harms associated with AI features. We examined the
major themes that emerged from these challenges. In addition, by analyzing participants’
usage patterns of FARSIGHT and FARSIGHT LITE, coupled with their interview feedback, we
explored how our tools mitigate certain challenges and also identified our tools’ limitations.

8.5.6.1 Challenges in envisioning harms.

We summarized three major challenges that participants encountered.

C1. Envisioning use cases. The most prevalent challenge in envisioning harms is to
anticipate different use cases for an AI feature. Multiple participants noted that it
was most challenging to imagine how different people would use technology, and
it was particularly difficult to “put myself in someone’s shoes” (P27, P37, P39) and
“empathize with different groups of people” (P11). Participants also underscored the
vast space of possible use cases (P31, P33, P36), and “often you don’t find out the
edge cases until you actually work with it” (P2). Some participants also emphasized
that it sometimes required creativity to imagine how an AI feature would be used and
especially misused (e.g., P5, P22, P23).

C2. Bias and subjectivity in harm envisioning. Interestingly, several participants recog-
nized their own biases in envisioning harms (e.g., P6, P21, P31). For example, P21
noted the challenge in overcoming their biases in anticipating the impacts of AI features:
“I had been coming at it from a very American-centric point of view at first. To talk
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about bias, I hadn’t even conceived of the government using this to monitor my phone,
but that could happen in other places.” Moreover, some participants acknowledged the
subjectivity in the definition of harms, as well as in the assessment of harms’ likelihood
and severity. For example, while envisioning harms and selecting harms to report (H2
and H4), some participants were conscious of whether other people would agree with
their identification and assessment of harms (P19, P38).

C3. Inexperience and discomfort in harm envisioning. Many participants mentioned that
our study was their first time to envision harms for AI features (e.g., P17, P26, P28).
For example, P26 noted “I have never envisioned harm before. This is not something
I would think of when developing AI products.” Similarly, P18 said “I’m familiar with
technical issues but not their social influence”. Also, P30 pointed out that there were
few incentives for developers to envision harms. In addition to unfamiliarity, some
participants also noted that it was uncomfortable and sad to think about harms (P3, P12).
For example, P3 said “It’s not comfortable thinking through all the bad things that can
happen. I think in general people don’t like thinking about bad things too much.”

8.5.6.2 FARSIGHT and FARSIGHT LITE address major challenges.

Our tools could help users address identified challenges.

A co-pilot for brainstorming diverse use cases. Many participants appreciated
that our tools provided them with a starting point to predict use cases (e.g., P8, P29,
P41). For example, after seeing a few AI-generated use cases, P8 found it much easier
to envision other use cases, and similarly, P24 felt empowered to “have a wider net to
cast” (C1). Also, P14 noted that even seeing far-fetched AI-generated content helped them
brainstorm new use cases. On the other hand, P21 appreciated that FARSIGHT had identified
many unexpected and thought-provoking use cases that provided a different perspective in
anticipating harms (C2).

In situ guide that promotes user agency. Participants especially liked that our tools
were directly integrated into existing AI prototyping tools and contextualized based on the
prompt (e.g., P19, P31, P37), where FARSIGHT and FARSIGHT LITE required minimal
effort to get started envisioning harms (C3). Participants also thought the Incident Panel
and Use Case Panel as a good reminder for potential harms for the AI feature that one
is prototyping (e.g., P12, P41, P42). For example, P12 commented that “Even if it’s just
sitting there, it would be educational.” Many participants also liked the interactivity of our
tools and found it engaging for adding new use cases, stakeholders, and harms (e.g., P9,
P19, P24)—many of them noted that FARSIGHT was so intriguing that they would like to
continue using it to explore potential harms (C3). Participants felt they had agency in harm
envisioning when using FARSIGHT. For example, P21 commented “If you think something
[AI-generated content] is totally bonkers, whatever, just delete it.” Similarly, P4 and P5
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compared the Harm Envisioner to a mind map, as they appreciate that the interface allows
them to freely organize and revise their thoughts in harm envisioning.

8.5.6.3 Limitations of FARSIGHT and FARSIGHT LITE.

Our findings showed that, in comparison to ENVISIONING GUIDE, FARSIGHT and FAR-
SIGHT LITE did not show significant differences in participants’ ability to envision more
likely or more severe harms (§ 8.5.4.1), nor did they assist participants in envisioning more
likely or more severe harms (§ 8.5.5.1). Additionally, participants’ feedback revealed two
major limitations of our tools.

Varied quality of LLM-generated content. Depending on participants’ prompts,
the related AI incidents in the Incident Panel, and LLM-generated use cases, stakeholders,
and harms were different across participants. Sometimes, participants found a few LLM-
generated content confusing and unhelpful. For example, when using our tools on the math
tutor prompt (H4), the incidents in the Incident Panel feature articles about hallucination in
chat-based LLM models. Some participants found these articles too generic and not relevant
to the math tutor app (P39, P41).

Also, some LLM-generated use cases could be too far-fetched. For example, for the math
tutor prompt, FARSIGHT sometimes showed a use case: “Scammers use it to explain complex
investment schemes to potential victims.” While some participants found it interesting
and relevant (e.g., P14, P26), others found it unrealistic and not useful (e.g., P6, P12).
This disagreement highlights the subjectivity in identifying and assessing harms (§ 8.6.2).
Interestingly, a few participants defended the usefulness of far-fetched content. P24 noted
“Even if it’s wrong [LLM-generated use case], it is still kind of helpful to think beyond the
immediate use case and who else can use this tool.” Similarly, P21 said “Some of these feel
more of a stretch but it’s interesting because I could see how it gives me ideas for things to
watch out for which I still appreciate.”

Lack of actionability. Another limitation is that our tools did not provide users with
actions to prevent or mitigate identified harms (P13, P22, P34). P13 also commented that
increasing awareness without providing actions to address responsible AI issues could be
harmful, because “People have an empathy quota, and it might just be displacing more
impactful efforts.” Related to the discomfort that some participants had experienced when
envisioning harms (C3), P40 mentioned that they felt scared and overwhelmed because there
were so many possible harms and they did not know how to address them. Similarly, P29
noted that the lack of actionability made them feel anxious and disappointed:

“I’m glad that I got to know about them [potential misuses]. But I feel I’m
vulnerable, probably because I can’t do much about stopping them. So that’s
something that really makes me feel very disappointed. Because unless we do
case-by-case analysis, this [preventing misuses] can be very tricky. I feel like
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it’s kind of adding anxiety to me. It’s good to know, but I feel like I can’t do
much about it.” (P29)

We did not incorporate harm mitigation into our tools, because mitigating harms associated
with LLM-powered applications remains an open research question (see more discussion
in § 8.6.3). After the evaluation study, we improved FARSIGHT by providing pointers to
existing LLM safety resources [e.g., 380, 381, 382, 362] when users exported their harms.

8.5.7 Limitations of Study Design

We acknowledge limitations in our tool and study designs. First, we recruited participants
from a single large technology company. This was because we needed to require partici-
pants to have prior experience in prototyping LLM-powered applications using a particular
prompt-crafting tool, into which we integrated FARSIGHT and FARSIGHT LITE in the study.
Consequently, all 42 participants had backgrounds in the technology industry in varying
roles, such as software engineers, product managers, UX researchers, and linguists4 as
shown in Table 8.2. Our participants have a wide range of familiarity with responsible
AI and prompting (Fig. 8.10), and they use LLMs for diverse tasks, including prototyping
AI features with LLMs—much like the intended users of FARSIGHT. Therefore, findings
from our study may be generalizable to AI prototypers who have worked in the technology
industry, and who are using LLMs to prototype AI-based applications. Nevertheless, to
understand how usable or effective FARSIGHT may be for a broader spectrum of AI pro-
totypers, particularly those with limited background or knowledge of AI, such as creative
writers, teachers, students, and more, further research involving individuals with more di-
verse backgrounds is needed. Second, we administered only one post-task (H3) immediately
following the intervention (H2). To evaluate the long-term impact of our tools on users’
ability to envision harms, a more extended longitudinal study is needed.

Finally, an inter-rater reliability test showed that, on average, the seven raters (i.e., of the
likelihood and severity of the identified harms) only had a slight agreement. The ratings of
the likelihood and severity of participants’ identified harms should thus be taken as an initial
step in evaluating identified harms, and not as the sole evidence demonstrating the value of
this approach. The relatively low inter-rater reliability may be due to the fact that perceptions
of severity and likelihood may be highly influenced by the raters’ personal experiences,
backgrounds, knowledge, and their positionality as a whole. Indeed, substantial prior work
on annotations of offensive language, hate speech, and other linguistic phenomena [383,
322, 384, 385, 386] suggest that disagreements between raters with different subjectivities
(i.e., personal backgrounds and experiences) is an inherent challenge to sociotechnical
evaluations, and not one that can be solved with more or better raters. We further discuss
the challenges regarding subjectivity in identifying and assessing harms in § 8.6.2.

4The linguists in our study work on consulting on language-based data used by AI product teams.
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8.6 Discussion

8.6.1 Motivation & Engagement in Responsible AI

Potentials of in situ and early intervention in motivating responsible AI practices.
Existing research suggests that many AI developers may not have incentives to consider
potential harms related to their AI applications [316]—or may be actively disincentivized
to identify such harms [347]. Our co-design user study validates this finding among an
emerging community involved in AI development—AI prototypers who use LLMs to
rapidly iterate on potential AI-based applications (§ 8.2.1). With the rapidly increasing
access to LLMs and easy-to-use prototyping tools, it is crucial to motivate AI prototypers
to consider AI risks when prototyping their AI applications or features (G3). To tackle
this challenge, we propose an in situ system design that integrates our tool into the AI
prototyper’s existing workflows and employs different design strategies to draw users’
attention without causing significant interruption to their flow. Our evaluation study shows
that users appreciate our design, and find this in-context warning tool easy to adopt and
engaging (§ 8.5.6.2). By showing unexpected use cases, stakeholders, and harms, FARSIGHT

piques users’ interests (§ 8.5.5.2) and motivates them to brainstorm more harms (§ 8.5.5.2).
These findings highlight the great potential of in situ design and early intervention for future
responsible AI works. Therefore, future designers of AI development tools (e.g., Google
AI Studio, computational notebooks, and VSCode) can natively integrate in situ interfaces
to promote responsible AI practices. In addition, future researchers can adopt our design
strategies to foster other responsible AI practices, such as illustrating bias in LLMs and
encouraging development documentation at an early AI development stage.

Tension between automation and human agency. FARSIGHT’s seamless integration
into AI prototypers’ workflows helps motivate AI prototypers to engage with harm envision-
ing. In addition, rather than asking users to anticipate harms entirely from scratch, FARSIGHT

leverages LLMs to generate the initial set of use cases, stakeholders, and harms, providing
users with inspiration and a foundation to build upon (§ 8.5.6.3). However, this seamless and
automated design might deter users from fully engaging in and contemplating the limitations
and potential risks associated with LLMs. Prior research in responsible AI has proposed the
value of a seamful design [e.g., 387, 388], where the designers strategically reveal seams
or introduce frictions or “productive restraint” [347, 146] to support increased reflection
on responsible AI during development. To explore this tension and tradeoffs between a
seamfully-designed workflow that is easy to use by prototypers, and a seamful design that
prompts reflection-in-action [387], we (1) designed the Harm Envisioner to encourage users
to edit LLM-generated content and steer the harm envisioning direction (§ 8.3.3, G4), and
(2) evaluated two variants of our tool in the evaluation study—FARSIGHT and FARSIGHT

LITE, where FARSIGHT LITE omits the Harm Envisioner.
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Our study results highlight that participants feel they have agency (§ 8.5.6.2), and they
like being able to control the harm anticipation process (Fig. 8.4). Our quantitative results
also show that FARSIGHT, with higher human agency, is more effective than FARSIGHT

LITE across all measures (§ 8.5.4.1, § 8.5.5.1). On the other hand, when engaging with AI-
generated content, some participants also report discomfort (C3) and even anxiety (§ 8.5.6.3).
Therefore, our work demonstrates that seamless design (in situ AI automation) and seamful
design (promoting user reflection) are complementary to each other—tradeoffs and a balance
between the two should be considered during the design of responsible AI tools [cf. 341].
For future responsible AI work, researchers should engage with potential users and other
impacted stakeholders throughout the design process and adjust their design ideas to ensure
the responsible AI tools they are designing are both easily adoptable and capable of eliciting
active and critical reflection.

8.6.2 Subjectivity in Harm Envisioning

In our evaluation user study, many participants report challenges overcoming the limitations
of their own experiences and perspectives when envisioning harms (C2). In addition, we
also observed the seven RAI raters of participants’ harms disagreed about which harms were
more or less severe or likely, resulting in a low inter-rater reliability for these two dimensions.
Our empirical findings contribute to prior research that highlights the role of subjectivity
and positionality in anticipating harms [89, 67] and in data annotation, particularly for
annotations of toxicity or hate speech [e.g., 322, 325, 383, 384, 385]. What constitutes harm
and the assessment of harm severity are often influenced by the individual’s background,
lived experiences, or even the organizational culture they are working in [389, 390]. For
example, for the article summarizer (H3), one participant envisioned a harm scenario: “If the
summary is wrong, journalists’ reputation might be harmed.”. This harm scenario received
likelihood ratings of 1, 4, and 3, and severity ratings of 1, 3, and 4 from three randomly
assigned raters. It is possible that the rater who assigned the ratings of 3 and 4 possessed
specific knowledge about the harms of journalists using LLMs to write article summaries,
which led them to rate this harm scenario as more likely and more severe.

A need for new methods to assess harms. Emerging research is beginning to develop
methods for measuring and resolving disagreements among annotators in cases where
there may in fact be no ground truth [e.g., 383, 385, 384, 322, 391]. Our findings in this
paper—including the low inter-rater reliability of the responsible AI raters—suggest that new
methods are needed in responsible AI to account for different perspectives on the severity and
likelihood of potential downstream harms. This may ideally involve recruiting participants
from communities or populations who may be impacted by a given AI application (e.g., the
stakeholders generated by FARSIGHT, for instance, as well as other stakeholders identified
by members of the communities themselves [392]). Moreover, with the rapidly increasing
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access to LLMs and easy-to-use AI prototyping tools, AI prototypers may encompass a
broader spectrum of roles beyond traditional AI practitioners [e.g., 340, 86]. Thus, they
may lack either the experience or the resources to recognize the limitations of their own
subjectivity when anticipating harms of their AI applications, and may lack the means to
identify and engage with diverse stakeholders as part of harm envisioning.

Benefits and challenges of using LLM to envision AI harms. Our evaluation study
highlights that diverse and unexpected AI-generated use cases, stakeholders, and harms in
FARSIGHT help some participants overcome their own failures of imagination [89] in order to
think from a broader perspective when independently envisioning harms (§ 8.5.5.2). Notably,
these effects were more prominent with FARSIGHT than with existing harm envisioning
processes [326] (Fig. 8.13). There are two implications of these findings. First, LLMs can
be a promising tool to help AI prototypers think outside of their own perspectives, and future
researchers can adapt our approach to other responsible AI practices. Second, LLMs may
encode biases from their training data [e.g., 97], and FARSIGHT may also reflect the biases
of its creators, as expressed in the underlying prompts used in FARSIGHT’s LLM, which
raises a critical question: to what extent can LLMs be helpful as part of a harm envisioning
process, without over-indexing on particular harms or leading AI prototypers to overlook
other types of harms?

Our research provides an initial starting point into investigating these questions, as
well as opening new questions into the role of subjectivity in harm envisioning. Future
research can further investigate the factors influencing users’ ability to envision harms of AI
applications, develop new ways to model and resolve disagreement among AI prototypers
or other evaluators about the severity and likelihood of envisioned harms, and integrate
such implications into LLM-powered responsible AI tools for AI prototypers or other AI
practitioners. Future research can also explore tradeoffs between semi-automated harm
envisioning processes (like FARSIGHT) and more traditional processes like value-sensitive
design [e.g., 76], participatory design [e.g., 393, 390, 392], and more.

8.6.3 Mitigating Harms during AI Prototyping

A limitation of FARSIGHT is its focus on harm identification rather than harm mitigation.
Participants from our co-design study (§ 8.2.1) and evaluation study (§ 8.5.6.3) wanted
FARSIGHT to provide actionable items to help them prevent and mitigate identified harms.
Some participants also suggested we develop an in situ prompt editing tool to address harms
identified from FARSIGHT (§ 8.2.1). Interestingly, while using FARSIGHT, some participants
voluntarily thought about actions and strategies to take after envisioning harms, such as
implementing an appeal process, collecting better data, and revising the prompts (§ 8.5.5.2).

Looking ahead, we argue that it is crucial for future designers to provide users with harm
mitigation suggestions and resources in systems similar to FARSIGHT. Some participants in
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our study complained that FARSIGHT is exploiting users’ “empathy quota” and potentially
desensitizing them about LLM harms, because FARSIGHT only warns users about harms
without providing mitigation suggestions (§ 8.5.6.3). This concern reflects the phenomenon
of “alarm fatigue” in alerting tools and monitoring alarms in healthcare. Alarm fatigue
occurs “when non-actionable alarms are in the majority, and clinicians develop decreased
reactivity, causing them to ‘tune out’ or ignore the alarms” [394]. Therefore, to combat
alarm fatigue and effectively promote responsible AI practices, future designers should
make responsible AI alerts actionable and prioritize actionable warnings in their systems.

Our findings highlight that FARSIGHT users have a great appetite for mitigation strategies
during AI prototyping. We have two hypotheses for this observation. First, as FARSIGHT

promotes human agency, it might also give participants a feeling of ownership of their
identified harms. Prior research shows that triggering a feeling of ownership motivates users’
actions [145]. Another hypothesis is that FARSIGHT elicits fear by exposing participants to
diverse potential harms of their AI applications, evidenced by participant-reported discom-
fort (C3) and anxiety (§ 8.5.6.3). Security researchers use fear appeals as a design strategy
to motivate users to take security actions [395]. Therefore, our empirical findings highlight
promising research opportunities in (1) providing in situ mitigation strategies during the
early AI prototyping stage, and (2) investigating if in situ tools can increase users’ adoption
of harm mitigation strategies.

8.7 Conclusion

We introduce FARSIGHT, the first in situ interactive tool to address the challenges in
anticipating potential harms in LLM-powered applications during prototyping. By high-
lighting relevant AI incident reports and enabling AI prototypers to curate and modify
LLM-generated use cases, stakeholders, and harms, FARSIGHT improves users’ ability to
independently anticipate potential risks associated with their prompts. A user study with 42
AI prototypers shows that our tool is useful and usable. FARSIGHT fosters a user-centric
approach, encouraging creators to consider end-users, and cascading harms, and extend their
awareness beyond immediate harms. Our tool is open-source and readily adoptable. We
hope our work will inspire future research and development of responsible AI tools that
target the early stages of the AI development process.
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CONCLUSIONS

In summary, my dissertation addresses the fundamental and practical challenges in under-
standing and guiding AI by developing scalable, easy-to-adopt, and interactive visualization
tools for diverse stakeholders. My work contributes to novel visualization techniques,
new human-AI interaction paradigms, user interactive workflows, and scalable algorithms.
I believe my research advances human understanding of AI technologies, enabling hu-
man agency when we interact with AI systems, promoting responsible development and
deployment of AI technologies, and increasing people’s trust in AI.

8.8 Research Contributions

My thesis makes research contributions across several major fronts, including human-
computer interaction, machine learning, interactive visualization, and, importantly, their
intersection to explain AI (Part I), guide AI (Part II), and democratize human-centered AI
practices (Part III).

Transformative visual AI explanation: worldwide deployment and scalable insight

• The viral success of CNN EXPLAINER exemplifies the effectiveness of our proposed
dynamic explanation in explaining complex AI models across various levels of ab-
straction (Chapter 3). Widely used by over 360,000 novices from more than 200
countries, CNN EXPLAINER has been integrated into deep learning courses across
top universities including Carnegie Mellon, Georgia Tech, Duke University, and the
University of Tokyo.

• Used by data scientists and researchers at Apple and Google Deepmind, WIZMAP is the
first system that smoothly visualizes and summarize over 1,000,000 embedding points
with novel algorithm-enabled dynamic annotations entirely in browsers (Chapter 4).

• We pioneer on-device computing techniques to accelerate scalable interactive visu-
alization for complex AI models and large datasets. For example, CNN EXPLAINER

explains a live convolutional neural network entirely in the user’s browser, with-
out the need for installation or dedicated servers—broadening the public’s access to
cutting-edge AI technologies (Chapter 3).

First-of-its-kind algorithms that enable actionable AI explainability

• Integrated into Microsoft’s interpretability library, GAM CHANGER empowers mil-
lions of developers to use simple clicks and drags to align the model behaviors with
their knowledge and values. GAM CHANGER puts AI explanations into action by
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introducing the first model-editing tool that enables practitioners and domain experts
to easily modify the weights in AI models (Chapter 6). It has been recognized with the
Best Paper award at the NeurIPS workshop on ML for clinical practice.

• GAM COACH is the first interactive algorithmic recourse tool that empowers end
users to specify their recourse preferences and iteratively fine-tune actionable recourse
plans that can alter unfavorable AI decisions, enabled by a novel algorithm that adapts
integer linear programming (Chapter 7).

Transformative paradigms to leapfrog responsible AI adoption

• Developed in collaboration with Google Deepmind researchers, FARSIGHT introduces
a new paradigm for designing and developing easy-to-adopt tools that can be directly
integrated into AI practitioners’ existing workflows. FARSIGHT helps practitioners
envision the potential harms of their AI product when they write prompts within their
favorite prompting interfaces (Chapter 8). This new paradigm has been recognized
with the Best Paper, Honorable Mention award at CHI’24.

• Our research is easily accessible to AI researchers, practitioners, and the general public.
For example, our tools can be used directly in computational notebooks (Chapter 4,
Chapter 6), the most popular AI development environment. Additionally, by providing
publicly accessible web-based deployments of CNN EXPLAINER, WIZMAP, GAM
CHANGER, GAM COACH, and FARSIGHT that require no installation, we lower the
barrier to learning and applying cutting-edge human-centered AI techniques.

Deployed and open-source systems and resources that accelerate AI innovation

• DIFFUSIONDB introduces the first large-scale open-access prompt dataset for text-
to-image generative models with 14,000,000 image-prompt pairs, totaling 6.5 TB in
size. With over 2,000,000 total data requests through the APIs to date, DIFFUSIONDB
is instrumental in enabling researchers to study the real-world usage and impacts of
generative AI models (Chapter 5). The impact of this dataset is recognized with the
Best Paper, Honorable Mention award at ACL’23.

• This PhD thesis has introduced a suite of 6 paradigm-shifting open-source tools that
empower and inspire researchers and practitioners to adopt our design and implementa-
tions in their human-centered AI research. Collectively, they have received over 10,000
stars on GitHub, the most popular platform for collaborative software development,
demonstrating their significant impact and widespread adoption within the community.

8.9 Impact

My research is already making a significant impact on society and industry.
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• CNN EXPLAINER has transformed AI education: its public demo has been integrated
into deep learning courses (Carnegie Mellon, Georgia Tech, Duke University, University
of Tokyo and more), helping 360,000 novices from 200+ countries learn about seemingly
complex ML concepts, and it has received 7,000 stars on GitHub.

• DIFFUSIONDB has received over 2,000,000 data requests through the HuggingFace APIs.
It is also among the top 20 most-liked datasets on HuggingFace out of 70,000 datasets.
It has been integrated into official AI tutorials from Amazon AWS and Google Cloud.

• GAM CHANGER is deployed in Microsoft and integrated into their open-source library
InterpretML. The tool is used by physicians in NYU hospitals on real-life hospital
admission prediction models.

• WIZMAP is used in Apple and Google to explore large text datasets.

• My works have been recognized by three best-paper-type awards across top-tier HCI,
NLP, and AI venues: FARSIGHT received the Best Paper Honorable Mention Award
at CHI’24; DIFFUSIONDB received the Best Paper Honorable Mention Award at
ACL’23; GAM CHANGER received the Best Paper Award at the NeurIPS Workshop
on Bridging the Gap: From ML Research to Clinical Practice. CNN EXPLAINER was
highlighted as a top visualization publication (top 1%) invited to present in SIGGRAPH.

• My research on democratizing human-centered AI has been invested in and recognized by
an Apple Scholars in AI/ML PhD fellowship and a J.P. Morgan AI PhD Fellowship.

8.10 Future Directions

This thesis has not only made several contributions and had a significant impact on society
and industry, but it has also unlocked numerous critical future research directions and
practical applications of human-centered AI.

8.10.1 Human-Centered AI for All

This thesis introduces novel techniques and tools for explaining AI (Part I) and enabling
human agency in AI interaction (Part II). The effectiveness of these tools relies on their
practical adoption, My thesis work on in situ responsible AI tools (Part III) sheds light on
the potential for designing human-centered AI techniques that are easy to adopt. Future
researchers can further explore methods to lower the barrier to adopting human-centered AI.

8.10.1.1 In-workflow Design to Promote Responsible AI

Existing research suggests that many AI developers may not have incentives to consider
the potential impacts of their AI applications [316]—or may be actively disincentivized
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to identify potential harms [347]. Our co-design user study for FARSIGHT (Chapter 8)
validates this finding among an emerging community involved in AI development—AI
prototypers who use LLMs to rapidly iterate on potential AI-based applications. With the
rapidly increasing access to LLMs and easy-to-use prototyping tools, it is crucial to motivate
AI prototypers to consider AI risks when prototyping their AI applications or features. To
tackle this challenge, we leverage in situ system design that integrates FARSIGHT into the
AI prototyper’s existing workflows and employs different design strategies to draw users’
attention without causing significant interruption to their flow. We find FARSIGHT users
appreciate our design and find this in-workflow approach easy to adopt and engaging. By
showing unexpected use cases, stakeholders, and harms, FARSIGHT piques users’ interests
and motivates them to brainstorm more harms. These findings highlight the great potential
of in situ design and early intervention for future responsible AI works. For example,
future designers of AI development tools (e.g., Google AI Studio and VSCode) can natively
integrate in situ interfaces to promote responsible AI practices. Future researchers can adopt
our design strategies to foster other responsible AI practices, such as illustrating bias in
LLMs and encouraging development documentation at an early AI development stage.

8.10.1.2 Promoting Human-Centered AI through Computational Notebooks

Computational notebooks, such as Jupyter Notebook [396] and Colab, are the most popu-
lar programming environments among data scientists [397]. These notebooks seamlessly
combine text, code, and visual outputs in a document that consists of an arbitrary number of
cells—small text and code editors. Users can execute a code cell, and its output (e.g., text
and visualizations) will be displayed below the cell. By providing a literate programming
environment, notebooks enable users to perform exploratory data analysis, document their
work, and share insights with collaborators [398]. This thesis work explores the integration
of human-centered AI tools (e.g., WIZMAP, GAM CHANGER, and FARSIGHT) into compu-
tational notebooks, with positive feedback from users. Indeed, to create easy-to-adopt tools,
there is a trend in the visualization community to develop interactive visualization systems
that can be used in notebooks [e.g., 399, 400, 401]. Future researchers can further explore
promoting human-centered AI through notebook workflows and democratizing authoring
notebook-based tools.

Promoting human-centered AI through notebook workflows. According to a re-
cent survey [205], there is an interesting trend that researchers exploit notebooks as a
means to promote responsible AI practices (e.g., AEQUITAS [68], FAIRLEARN [402], FAR-
SIGHT [403], and MLDOC [404]). Two motivations for this emerging trend are discussed
in [205]. First, AI practitioners often lack incentives to adopt responsible AI practices [316,
63], such as fairness assessment and model documentation. By integrating responsible
AI practices directly into practitioners’ existing notebook workflows, researchers aim to
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minimize adoption friction and “nudge” [404] practitioners to follow these practices. For
example, FARSIGHT alerts users to potential harms of their large language model-powered
apps while they are developing prompts in a notebook. Similarly, MLDOC automatically
creates and shows an AI “model card” [323] using content from a notebook.

Secondly, responsible AI requires collaboration across disciplines and teams within
an organization [316, 86]. Because AI practitioners have already been using notebooks
to collaborate with diverse stakeholders (e.g., designers and managers) [405], researchers
leverage notebooks as a boundary object to facilitate responsible AI practices across teams.
For example, in Deng et al. [406]’s study on ML fairness toolkits, a participant highlighted
“a simple notebook format and compelling visualizations are needed for [organizational]
leadership to adopt the toolkits.” As prioritizing people’s experience in human-AI inter-
action has become increasingly crucial, exciting research opportunities have emerged for
researchers to design, develop, and evaluate notebook visualization tools that promote
human-centered AI.

Democratizing notebook interactive tool creation. From our experience in developing
notebook visualization tools to promote human-centered AI, we discover a spectrum of meth-
ods, varying in difficulty, for authoring notebook tools. In particular, accessing code and text
and supporting bidirectional notebook-tool communication require significant engineering
effort. Furthermore, some implementation strategies are only compatible with specific note-
book platforms. Therefore, we see research opportunities to lower the barrier to authoring
notebook interactive visualization tools that harness the full potential of notebook platforms.
First, practitioners often use libraries such as D3 [180] and VegaLite [407] to develop
web-based interactive visualizations. It would be valuable if these libraries integrated native
support for notebook platforms or new libraries specifically targeted authoring notebook
visualizations. On the other hand, researchers can also enhance notebook platforms to better
support interactive visualizations. For example, similar to browser vendors sharing the same
web standard, researchers can develop a universal notebook protocol that enables developers
to access and communicate data using a standardized method across notebook platforms.

In addition, there is a design trade-off regarding visualization display styles and mod-
ularity partially arising from the rigid layout of the popular cell-based notebooks [408].
For example, most notebook platforms present cells in a linear manner, thereby requiring
designers to decide whether to display their visualization tools within the flow of the cell
or detach them from the flow. To address this trade-off, researchers can explore alternative
notebook layouts. For example, researchers have introduced sticky cells [409] to break the
linear presentation of notebook cells. These sticky cells provide visualization designers with
the flexibility to seamlessly switch between on-demand and always-on displays. Future
researchers could develop new and intelligent notebook systems that make it easy to design
human-centered AI interactive tools that support computational notebooks.
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8.10.2 Interactive AI Alignment

With GAM CHANGER (Chapter 6) and GAM COACH (Chapter 7), my thesis aims to
empower AI practitioners and people impacted by AI systems to not only interpret AI
models but also align these models with their knowledge and values. As we transition into a
new AI paradigm featuring large generative models, amble exciting research opportunities
are emerging to assist people, particularly end users, in steering AI models according to
their preferences and values.

8.10.2.1 Putting End Users at the Center

During the design and implementation of GAM COACH, we have encountered many
challenges in transforming technically sound ML techniques into a seamless user experience.
As our targeted users are everyday people who are less familiar with ML and domain-specific
concepts, one of our design goals is to help them understand necessary concepts and have a
frictionless experience. We aim to achieve this goal by following a progressive disclosure and
details-on-demand design strategy [296, 295] and presenting textual annotations to explain
visual representations in the tool. However, our user study suggests that a few users might
still find it challenging to understand and use GAM COACH at first. During our development
process, we identify many edge cases that a recourse application would encounter in practice,
such as features requiring integer values, features using log transformations, or features
less familiar to everyday users. Our open-source implementation handles these edge cases,
and we provide ML developers with simple APIs to add descriptions for domain-specific
feature names in their own instances of GAM COACH. However, these practical edge cases
are rarely discussed or handled in the recourse research community, since (1) the field of
algorithmic recourse is relatively nascent, (2) and the main evaluation criteria of recourse
research are distance-based statistics instead of user experience [280].

Looking ahead, in addition to developing faster and more effective techniques to explain
or steer AI models, we also hope future researchers will engage with end users and incorpo-
rate user experience into their research agenda. For example, recent researchers have intro-
duced prompting techniques to guide large language models [e.g., 410, 411, 412]. However,
it remains unclear how we should design systems and interfaces that enable less experienced
end users to easily steer large language models using these techniques. This thesis leverages
interactive visualizations to aid end users in learning and guiding AI models. Besides
interactive visualization, future researchers can also explore alternative mediums, such as
through a textual [314] or multi-modal approach [315], to communicate and steer AI models.

8.10.2.2 Collaborative Prompt Engineering

To use and instruct general-purpose large language models to perform specific tasks, users
need to provide them with prompts—text instructions and examples of desired outputs [413,
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414]. These prompts serve as background contexts and guides for LLMs to generate text
that aligns with users’ objectives. Designing effective prompts, known as prompt engi-
neering, poses significant challenges for LLM users [415, 337]. LLM users often rely on
trial and error and employ unintuitive patterns, such as adding “think step by step” [410]
to their prompts, to successfully instruct LLMs. Prompt engineering, despite its name, is
considered an art [416] and is even compared to wizards learning “magic spells” [417, 221].
Prompt writers may not fully understand why certain prompts work, but they still add them
to their “spell books.” Prompting is especially challenging for non-AI-experts, who are
often confused about getting started and lack sufficient guidance and training on LLMs and
prompting [338, 418].

Social prompt engineering. One promising direction to empower everyday users in
instructing large language models is to leverage social computing techniques. For example,
various online communities, including Promptstacks [419], ChatGPT Prompt Genius [420],
and ShareGPT [421], serve as platforms for prompt creators to share tips, collaborate, and
stay updated on AI advancements. User prompts from social media have also been scraped
to create prompt datasets for AI model development [422]. Online prompt marketplaces,
such as PromptBase [423], PromptHero [424] and ChatX [425], have emerged to allow
users to buy and sell prompts for generative models. Midjourney’s Discord server [246]
allows users to run and share prompts for text-to-image generative models, with dedicated
sections for prompt critique and improvement [49]. More recently, WORDFLOW [334]
allows everyday users to easily customize prompts and LLM settings, share prompts with
the community, and copy community prompts.

Colalborative systems for AI alignment. Looking ahead, future researchers can explore
designs and techniques that build collaborative platforms to help everyday users effectively
control generative models. For example, researchers can draw inspiration from gaming
social platforms like Steam Community [426] and Pokémon GO forums [427], where gamers
engage in research and share strategies to overcome in-game challenges. By comparing
prompting LLMs to fighting game bosses, we can explore the design of social systems
that motivate users to research and exchange prompting techniques. To incentivize user
participation in prompt sharing, researchers can explore both intrinsic motivations, such
as designing an enjoyable social system [428], and extrinsic motivations, such as virtual
rewards and reputation systems [429, 430]. Additionally, future researchers can explore
using social media ranking techniques to recommend relevant community prompts to users
based on context and the user’s tasks [431].

8.10.3 On-device Computing for Human-centered AI

To ensure AI explainability and human guidance are accessible to all, we leverage modern
web technologies that enable running AI models and techniques directly on end users’ edge
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devices without the need for downloading or setting up dedicated servers. For example, CNN
EXPLAINER (Chapter 3) uses WebGL to enable users to run a convolutional neural network
in their browser for image classification. Similarly, GAM CHANGER (Chapter 6) employs
WebAssembly to run a generalized additive model in the user’s browser and evaluate it on a
dataset in real time as the user edits the model parameters. The convenience of being able
to quickly use our tools without the need for installation is appreciated by educators and
students, while physicians value the ability to locally modify AI model parameters without
transmitting private data to the cloud. This highlights the promising research opportunities
for advancing on-device computing for human-centered AI.

8.10.3.1 On-device AI Explainability

The web browser is a popular platform for explainable AI tools. To help AI novices learn
about the inner workings of AI technologies, researchers develop Web-based visualization
tools to interactively explain how different AI models work, such as GAN Lab [19] and CNN
Explainer. Additionally, web-based visual analytics tools are developed to help AI experts
interpret their models [e.g., 432, 276, 401]. Recently, there has been an increase in explain-
ability tools that can run entirely within the user’s browser. For example, Microscope [433]
allows users to analyze neuron representations in their browsers with pre-computation.

On the other hand, the in-browser library WEBSHAP [434] provides explanations for
any AI model class using the popular posthoc model-agnostic explanation technique Kernel
SHAP [243]. Using the Web as a platform, WEBSHAP makes it easier for developers to
deploy explainable ML systems and enable user interactions. Moving forward, researchers
can consider leveraging new Web APIs to enhance on-device explainability, such as Service
Worker for offline explainability, WebSocket for collaborative interpretations, and Web
Crypto for verifiable explanations. Furthermore, researchers can explore the integration of
on-device explanation techniques directly into browsers through the Web Inspector tools,
enabling users to easily view and interpret any ML models running on a Web page.

8.10.3.2 On-device Large Language Models

Traditional AI systems are typically deployed on remote servers with their outputs sent to
client devices. However, there has been a recent surge of interest in deploying AI models
directly on edge devices in the pursuit of private, ubiquitous, and interactive AI experiences.
Tools such as TensorFlow.js [179], ONNX [435], MLC [436, 437], and Core ML [438] have
significantly reduced the barriers to running large language models in browsers and mobile
devices. Researchers have proposed various on-device systems, including information
retrieval [439, 440], recommender systems [441, 442], prediction explanation [247, 443,
434], speech recognition [444, 445], translation [446], and writing assistants [334]. Recently,
MEMEMO [447] introduces the first adaptation of dense retrieval to browsers, enabling
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retrieval-augmented generation with on-device large language models [414].
Looking ahead, researchers can further explore model architecture and compression

techniques to make on-device local large language models efficient. The key benefits
of on-device large language models are privacy, ubiquity, and interactivity. On-device
computing empowers users to use AI models directly on their devices, keeping sensitive
model inputs secure (e.g., financial and medical information). Therefore, researchers and
practitioners can design novel systems and experiences by leveraging on-device generative
models. For example, researchers can leverage on-device dense storage and retrieval to
design browser extensions that automatically and privately encode and store a user’s visited
web pages, photos, and academic papers. These extensions can serve as an intelligent
“second brain” [448] to help users capture and review knowledge. Similarly, one can explore
integrating on-device large language models into the workflows in healthcare and finance
domains, where data privacy is critical.

8.11 Conclusion

My dissertation pushes the frontier of AI through a human-centered approach, introducing
new paradigms, techniques, and tools that not only explain AI models but also enable people
to align AI with their knowledge and values. I firmly believe that we should develop AI
systems with and for people. Moving forward, my mission is to innovate practical tools and
techniques that empower everyone to interact with AI systems with ease, trust, and joy. I am
dedicated to collaborating with researchers, domain experts, and everyday people to further
this mission. This dissertation marks the initial step towards this goal, and I aspire to drive
innovation across disciplines, ultimately making positive impacts on people’s everyday lives
and society as a whole.
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