Classifying T Cell Activity with Convolutional Neural Networks

Introduction

- T cell activity state is important for immunotherapy
- Autofluorescence imaging is label-free and non-destructive • Use machine learning to classify activated and quiescent T cells
- with only autofluorescence intensity images
- Results of five classifiers show that advanced models can accurately classify T cell activity

Zijie J. Wang^{1,2}, Alex J. Walsh², Melissa C. Skala^{1,2}, Anthony Gitter^{1,2}

¹University of Wisconsin–Madison, ²Morgridge Institute for Research

Machine Learning Models

- Binary classification: activated and quiescent
- Various machine learning models of increasing complexity
- Understand when and why deep learning is needed

Model	Description	Hyper-parameter
Frequency Classifier	Predict class probability using the positive frequency in training set	None
Logistic Regression with Pixe Matrix	Regularized logistic regression model fitted with image pixel matrix	L1 penalty power λ
Logistic Regression with Image Intensity and Size	Regularized logistic regression model fitted with two numerical values: total intensity and mask size	L1 penalty power λ
Logistic Regression with CellProfiler Features	Regularized logistic regression model fitted with 123 of Intensity, Texture, and Area features extracted using CellProfiler	L1 penalty power λ
Simple Fully Connected Neural Network	Fully connected one-layer neural network with pixel intensity matrix as input	Num of neurons, learning rate, batch size
Simple Convolutional Networl	LeNet network with pixel intensity as input	Learning rate, batch size
Pre-trained CNN with retraining the Last Layer	Retrain the last layer of Inception v3 model	Learning rate, batch size
Pre-trained CNN with retraining the Best Layer	Retrain the last n layers of Inception v3 model	Learning rate, batch size, <i>n</i>
Pre-train Inception v3 on generic images		
50 thousand cell images	Extract cell image feature vector (bottleneck) using higher layers 2 Categories	

Nested Cross-validation

- z = 🖾 🕷 1500 Quiescen 9306 7428 9414 31950

