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1 Introduction 

Immunotherapy is a type of cancer treatment that uses the body’s own substances to boost 

natural defense against cancer. T cells, the most important immune cells in the human body, are 

a promising target for immunotherapies because of their diverse cytotoxic and immune-

modulating activity. Immunotherapies that enhance T cell functions are currently used in clinical 

cancer treatments [1]. Some are also in development for additional diseases including HIV and 

diabetes [2,3]. Because of the different behaviors of T cell subtypes, it is required to assess the 

effect of various T cell compartments on patients and select the appropriate cell populations 

during immunotherapies. However, current T cell profiling methods, such as surface protein 

expression and cytokine production, rely on exogenous contrast agents. These methods require a 

long processing period, and some of them have destructive effects on cells. Therefore, a label-

free and non-destructive pipeline to determine T cell functions will be more amenable to 

subtyping T cells for immunotherapies. 

Autofluorescence imaging is appealing because it only relies on endogenous contrast and is 

non-destructive. Previous studies have shown success in using autofluorescence imaging on 

identifying macrophages in vivo [4]. However, this method usually only generates grayscale cell 

images, which is less quantitative and informative than other T cell profiling pipelines. In 

addition, current methods to determine cell subtypes with autofluorescence imaging require a 

large amount of human labor to label output images. In this study, we aim to develop a novel 

automated framework that utilizes autofluorescence cell images to assess T cell functions at the 

single-cell level. 

Machine learning is a collection of statistical models that computers use to make or improve 

predictions based on data. Studies have shown that machine learning is promising for 
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compensating for less informative fluorescent image data and automating cell subtype 

classification. For example, researchers have used a regularized logistic regression to assess the 

macrophage activation state [5] and a support vector classifier to determine heterogeneous cell 

populations [6]. Recently, more advanced machine learning models, such as the convolutional 

neural network (CNN), were explored with cellular image data to classify cell phenotypes [7] 

and differentiate immune cells from cancer cells [8]. In addition, CNNs can also be used to solve 

problems that are related to cell subtype classifications, such as cell segmentation [9] and cell 

sorting [10]. 

We here propose to use transfer learning from a pre-trained deep CNN to classify T cell 

activation state at the single-cell level. Instead of extracting a small set of features from raw 

images before applying the CNN [8], this approach utilizes cell images by treating raw 

autofluorescence images as input data. Also, it takes advantage of a model which has been 

trained on generic images, and only retrains partial layers. Therefore, comparing to end-to-end 

CNN training [7], our approach is more computationally efficient and requires fewer training 

samples. To overcome the inevitable artifacts of microscopy images and the shortage of training 

data, we carefully developed an image pre-processing pipeline with image augmentation to 

improve model performance. Because T cells have subtle differences from donor to donor in 

real-life immunotherapy applications, we designed a rigorous donor-specific cross-validation 

scheme to train and evaluate our models. For the same reason, we had held out all images from 

one cell donor and only used them to assess the final performance of our best model. 

We explored the most advanced model with a gradient of several increasingly simpler 

models, which help us understand when and why deep learning is needed over simpler models. 

Even though the transfer learning approach outperforms other models across different donors, 
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the performance gap is smaller in some than others. It provides insights for alternative image-

based T cell classification methods. All of our code is organized in Jupyter notebooks [11] with 

reproducible examples and comprehensive instructions, which can serve as instructive examples 

for the audience who are not familiar with machine learning application on autofluorescence 

microscopy images.  

 

 

 

Fig. 1. T Cell Classification Overview. 
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2 Results 

2.1 Overview 

The goal of our study is to classify individual T cells as activated or quiescent (inactivated), 

using only cropped autofluorescence cell images. The overall workflow for our pre-trained CNN 

model is described in Fig. 1. This workflow starts from image pre-processing and proceeds to 

model training and model evaluation. In addition to the transfer learning model, we explored a 

frequency classifier, three Lasso logistic regression models with different features, a simple one-

layer neural network and a simple CNN model. These models follow a similar workflow to the 

pre-trained CNN model. 

2.2 Cross-validation Results 

T cell microscopy images appear to be slightly different from donor to donor. A trained 

model that can be generalized to new donors will be useful in the clinic. Therefore, to assess our 

classifier’s performance on cell images from new donors, we designed a nested cross-validation 

scheme to train, tune and test all models. For the same reason, we held out an entire donor, donor 

4, from our image dataset and only use it to evaluate the final best model. Due to this cross-

validation design, the same model could have various optimal hyper-parameters for different test 

donors. Therefore, the final model performance is grouped by test donors (Fig. 2). Also, 

Precision-recall (PR) curves and Receiver operating characteristic (ROC) curves are plotted to 

further assess the test performance (Fig. 3, Fig. 4). Based on these results, two pre-trained CNN 

models outperform other classifiers. 
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A frequency classifier, which uses the frequency of positive samples in the training set as the 

probability score of the activated label, is used as our baseline model. The average accuracy of 

all test donors is 37.56% (Table 1). It implies that the majority class in the test set and training 

Fig. 2. Model Test Performance Summary. 

Fig. 3. Model Test Performance - PR Curves. 
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set are more likely to be different. For example, there are more activated cells from donor 1 

while there are more quiescent cells from the combination of donor 2, 3, 5 and 6. This sets up a 

good baseline model since classifiers that fail to utilize other features rather than the label count 

will be prone to perform poorly. 

Three logistic regression models using different features all give better classification than the 

baseline model. The logistic regression fitted with the image pixel matrix leads to an average 

accuracy of 78.74% (Table 2). Among those 6,724 pixel features, over 5,000 features were 

reduced by the Lasso regularization. To interpret this model, one can plot the exponential of each 

pixel’s coefficient to visualize the odds ratios. As shown in Fig. 5, this model learned the shape 

of cells, and cells with larger size were more likely to be classified as activated. The logistic 

regression using only two features, mask size and total intensity, gives slightly better 

Fig. 4. Model Test Performance - ROC Curves. 
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performance with an average accuracy of 79.93% (Table 3). For all test donors, the optimal 

coefficient of cell mask size is negative whereas the coefficient of total intensity is positive. 

After adjusting the standard deviation of two features, this model is more sensitive to total 

intensity. This can be interpreted as after fixing the total intensity, cells with a larger size, 

visually dimmer cells, are more likely to be quiescent. Finally, the logistic regression model with 

CellProfiler [12] attributes, such as mean intensity value and cell perimeter, yields 87.14% 

average accuracy (Table 4). After adjusting the deviation, attributes that are related to image 

intensity and cell area are the most significant. 

In addition to linear classifiers, non-linear models with image pixel as input data were 

developed and tested. A simple neural network with one hidden layer was fine-tuned on learning 

rate, batch size and the number of hidden layer neurons. Even though its average accuracy of 

86.05% (Table 5) is slightly lower than the best logistic regression, it has a more stable 

performance across five test donors. In comparison, the simple CNN LeNet has a more complex 

Table 1: Performance of Frequency Classifier 

Donor Accuracy Precision Recall Average 
Precision 

AUC Activated 
Count 

Quescent 
Count 

1 13.16% 13.16% 100.00% 13.16% 50.00% 235 1551 

2 17.89% 0.00% 0.00% 82.11% 50.00% 647 141 

3 73.52% 0.00% 0.00% 26.48% 50.00% 446 1238 

5 26.48% 0.00% 0.00% 73.52% 50.00% 683 246 

6 56.75% 0.00% 0.00% 43.25% 50.00% 442 580 
 

Fig. 5. Coefficient Visualization for Logistic Regression Model with Image Pixel Features. 
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architecture [13]. After selecting the best learning rate and batch size, LeNet has reached an 

average accuracy of 89.39% (Table 6). 

Our most advanced models using a pre-trained CNN outperform all methods discussed 

above. These two models use cell images as input and require a previously trained CNN. For one 

model, we only retrained the last layer, whereas we tuned the retraining region as a hyper-

Table 2: Performance of Logistic Regression (Image Pixel Matrix) 

Donor Accuracy Precision Recall Average 
Precision 

AUC Activated 
Count 

Quescent 
Count 

1 84.60% 43.79% 60.00% 53.90% 82.27% 235 1551 

2 68.02% 94.99% 64.45% 95.38% 81.61% 647 141 

3 79.57% 61.75% 60.09% 68.67% 81.10% 446 1238 

5 80.81% 88.12% 85.42% 95.20% 87.16% 683 246 

6 80.68% 73.43% 86.97% 90.19% 90.59% 442 580 
 

Table 3: Performance of Logistic Regression (Size and Total Intensity) 

Donor Accuracy Precision Recall Average 
Precision 

AUC Activated 
Count 

Quescent 
Count 

1 88.13% 55.35% 50.64% 53.67% 79.92% 235 1551 

2 65.99% 96.56% 60.74% 94.46% 79.34% 647 141 

3 81.59% 68.89% 55.61% 68.12% 74.68% 446 1238 

5 80.92% 89.32% 84.11% 95.20% 86.68% 683 246 

6 83.02% 78.17% 84.49% 89.86% 89.02% 442 580 
 

Table 4: Performance of Logistic Regression (CellProfiler Attributes) 

Donor Accuracy Precision Recall Average 
Precision 

AUC Activated 
Count 

Quescent 
Count 

1 95.74% 86.98% 79.57% 88.85% 95.61% 235 1551 

2 76.65% 91.56% 78.83% 95.24% 82.33% 647 141 

3 92.16% 94.60% 74.66% 93.07% 96.26% 446 1238 

5 81.81% 81.81% 96.78% 93.74% 86.70% 683 246 

6 89.33% 82.33% 95.93% 95.97% 97.01% 442 580 
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parameter for the other model. The average accuracy is 92.07% for the first model (Table 7) and 

92.18% for the latter model (Table 8).  

2.3 Assessing Generalization with a New Donor 

In order to evaluate our best model’s ability to generalize to T cell images from a new 

individual, images from donor 4 were completely held out during the entire cross-validation 

Table 5: Performance of Simple Neural Network 

Donor Accuracy Precision Recall Average 
Precision 

AUC Activated 
Count 

Quescent 
Count 

1 90.09% 59.12% 80.00% 67.14% 90.51% 235 1551 

2 83.63% 96.59% 83.15% 96.53% 88.38% 647 141 

3 88.06% 81.94% 70.18% 84.63% 89.06% 446 1238 

5 85.53% 88.21% 92.71% 96.33% 91.30% 683 246 

6 82.93% 72.53% 97.30% 92.34% 95.03% 442 580 
 

Table 6: Performance of LeNet 

Donor Accuracy Precision Recall Average 
Precision 

AUC Activated 
Count 

Quescent 
Count 

1 93.62% 77.13% 73.19% 77.53% 95.21% 235 1551 

2 85.91% 96.21% 86.24% 96.60% 88.45% 647 141 

3 91.69% 93.97% 73.32% 90.99% 94.27% 446 1238 

5 86.98% 88.18% 95.02% 91.93% 86.73% 683 246 

6 88.75% 80.45% 97.74% 96.51% 95.44% 442 580 
 

Table 7: Performance of Pre-trained CNN (Last Layer) 

Donor Accuracy Precision Recall Average 
Precision 

AUC Activated 
Count 

Quescent 
Count 

1 94.90% 78.57% 84.26% 90.29% 96.68% 235 1551 

2 90.86% 97.52% 91.19% 98.82% 95.69% 446 1238 

3 94.54% 95.85% 82.96% 95.63% 97.47% 647 141 

5 89.45% 90.01% 96.34% 94.87% 91.65% 683 246 

6 90.61% 83.02% 98.42% 96.90% 98.37% 442 580 
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process and all of the model implementation and study design. After determining the pre-trained 

CNN model with optimal training layers as our best model, we applied the same nested Cross-

validation scheme to train, tune and test it on images from donor 4. It gives an accuracy of 

98.59% (Table 9). The performance metrics in Table 9 are significantly higher than their 

counterparts in Table 8. One reason is that this evaluation has training data from 5 donors, 

whereas previous tests only consist of training images from 4 donors.  

Table 8: Performance of Pre-trained CNN (Best Layers) 

Donor Accuracy Precision Recall Average 
Precision 

AUC Activated 
Count 

Quescent 
Count 

1 95.80% 82.26% 86.81% 93.62% 97.66% 235 1551 

2 88.96% 95.60% 90.73% 98.45% 93.83% 647 141 

3 93.65% 95.69% 79.60% 94.76% 96.82% 446 1238 

5 90.42% 91.60% 95.75% 97.35% 94.58% 683 246 

6 92.07% 90.38% 91.40% 97.57% 97.66% 442 580 

 
Table 9: Performance of Pre-trained CNN (Best Layers) on Donor 4 

Donor Accuracy Precision Recall Average 
Precision 

AUC Activated 
Count 

Quescent 
Count 

4 98.59% 99.15% 96.68% 99.67% 99.89% 482 1569 
 

Fig. 6. Performance of Pre-trained CNN with Different Retraining Layers. 



   

 

11 

2.4 Optimizing Layers of the Pre-Trained CNN  

We define n, ranging from 1 to 11, as the number of last retraining Inception modules in the 

pre-trained CNN model. After tuning n along with other hyper-parameters through 3,520 nested 

cross-validation inner loop jobs, we tested pre-trained CNN models with all possible n values 

and associated optimal hyper-parameters for each test donor. As shown in Fig. 6, despite the 

Fig. 8. Saliency Maps of the Last Layer of Best Model with Images from Donor 1. 

Fig. 7. Best Model Misclassified Images from Donor 1. 
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outlier of donor 6 with n as 11, different n values give similar metrics. It suggests that retraining 

more layers in a pre-trained CNN does not significantly improve model performance. 

2.5 CNN Interpretation 

T cell images that the best model failed to classify correctly were visualized with model’s 

classification confidence calibration. Fig. 7 shows all misclassified images for test donor 1, 

where the majority images include artifacts or multiple cells. Also, Saliency maps were used to 

interpret why the best model makes decisions [14]. Fig. 8 suggests that the model has learned to 

locate paddings and is more sensitive to high-intensity regions. 

3 Discussion 

The method we propose, retraining a pre-trained CNN model with T cell autofluorescence 

microscopy images, can classify activated and quiescent T cells. More importantly, its 

classification performance is significantly higher than other machine learning models that are 

commonly used for microscopy image classification. Also, its classification decision is sensitive 

to high-intensity regions on the image, which is in good agreement of how bioengineers 

manually analyze this type of autofluorescence cell images.  

Based on the misclassified images, the performance of pre-trained CNN model is limited by 

the quality of cropped single-cell images. Developing a better filter to detect images with 

artifacts not only can further improve classification accuracy, but also contribute to other studies 

using microscopy cell images. Similarly, there are recent studies on developing novel cell 

segmentation methods using state-of-the-art machine learning algorithms [9,15]. 

Unlike the common transfer learning approach where only the last layer of a pre-trained 

CNN is retrained, we thoroughly explored the effect of retraining more than the last layer. The 

results suggest that retraining more layers does not improve classification performance. Possible 
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reasons include the limited sample size and relatively monotonic cell image representations. This 

provides important insights for the application of this study: given the extra compute costs and 

implementation challenges, retraining only the last layer is sufficient. If users are interested in 

optimizing the hyper-parameter n, we suggest taking a larger "step size” in the grid search. 

The results of our meticulous model comparison indicate that more complex classifiers tend 

to have better and more stable performance. However, more advanced models such as pre-

trained CNNs are less interpretable than linear models. For logistic regression models, we can 

make statistical inference on every feature representation. However, it is much harder to interpret 

neural networks. Saliency maps help locate which region on the input image influence the 

classification the most, but more than thousands of learned coefficients remain unexplained. 

Therefore, in applications that require a full understanding of how a classifier makes decisions, 

so users can trust the system, logistic regression models are recommended. 

Due to the computing costs, each model in our study was only tuned and tested once. This 

leads to a limitation of our study in which model performance, especially for the CNNs, is 

variable based on initializations, hardware, etc. Therefore, slight differences in performance 

should not be over-interpreted. In future studies, we are interested in designing an efficient 

evaluation scheme that takes performance variance into account. 

4 Method 

4.1 Cell Preparation and Imaging 

All of our T cell autofluorescence images come from Walsh et al.’s study [16]. Peripheral 

blood was drawn from 6 healthy donors followed by extractions of bulk CD3+ T cells or an 

isolated CD3+ CD8+ T cell subset. Then, T cells were divided into quiescent and activated 

groups, where the activated group was stimulated with activating antibodies. Two T cell 
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populations were cultured separately before generating NAD(P)H images using autofluorescence 

imaging. Antibodies were used to validate T cell type and activation state. Finally, these 

grayscale microscopy images were labeled with donor ID and T cell activity. 

4.2 Image Processing 

Cell segmentation was performed with the CellProfiler program [12]. Each cell was cropped 

according to the bounding box of its segmented mask. Cell short NAD(P)H lifetime, which had 

been generated from autofluorescence imaging, was used to filter out other visually 

indistinguishable cells (e.g., red blood cells). To validate and improve cell segmentation, an 

automatic filtering framework is designed: it detects very dim images and images with no cells 

by thresholding the combination of image entropy and total intensity (Fig. 9). The threshold 

values (4, 4.7 and 3500 in Fig. 9) were chosen based on the distribution of entropy and intensity 

with Gaussian approximation. This filter was so conservative that there was no false positive 

detection. 

Since some advanced machine learning algorithms require the input to be square images with 

uniform size, all activated and quiescent cell images were padded with black borders. The 

padding size was chosen based on the largest image in the dataset after removing extremely large 

Fig. 9. Dim Image Filtering with Entropy and Intensity. 
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outliers. In this dataset, all padded images have dimension 82 × 82. Also, augmented images 

were introduced by rotating each original image by 90, 180, 270 degrees and flipping 

horizontally and vertically. This image processing pipeline was implemented using the Python 

package OpenCV [17]. 

4.3 Nested Cross-validation 

Multiple classifiers with a gradient of increasing complexity were carefully designed and 

tested. We used the same leave-one-donor-out testing scheme to measure the performance for all 

models. For example, for test donor 1, a logistic regression model is trained on all images 

including augmented ones from donor 2, 3, 5, and 6 before testing on all unaugmented images 

from donor 1. By testing in this way, the classification result can tell how well each model 

performs on newly added data (e.g., new donors). 

Following the leave-one-donor-out test design, we want hyper-parameter selections to be 

independent of the test donor as well. Therefore, a nested cross-validation scheme is developed 

(Fig. 10). Within the inner loop, a test donor is completely held out, and 4-fold cross-validation 

is performed to measure the average performance of each hyper-parameter combination (grid 

search). For models requiring early stopping, the validation set in the 4-fold cross-validation is 

used to assess the stopping criteria. Since training continues as long as the performance on 

images from the validation donor improves, the best hyper-parameter choice arguably could be 

optimistic. However, due to limited training samples, we decided to maximize the number of 

images used for training instead of partitioning additional images for early stopping. In the outer 

loop, a model with its best hyper-parameter is trained and then tested on the independent test 

donor. For example, Tables 1–9 report the test metrics from the outer loop. 
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4.4 Linear Classifier 

A trivial frequency classifier is introduced as a baseline model. This model computes the 

positive sample percentage in the training set, then it uses this frequency as a positive class 

prediction score (between 0 and 1) for all samples in the test set. 

Logistic regression is a standard statistical model used to classify microscopy images [5]. 

Three logistic regression models with Lasso regularization were fitted and tested using the 

Python package Scikit-learn [18]. An image intensity matrix with dimension 82 × 82 and values 

from 0 to 255 was used to fit the first regression model. The second model was fitted with two 

scalar features: cell size and image total intensity, where cell size was computed using the pixel 

count in the cell mask generated by CellProfiler. The last regression model used 123 features 

relating to cell intensity, texture and area, which were extracted from cell images using a 

CellProfiler pipeline with modules MeaureObjectSizeShape, MeasureObjectIntensity and 

Fig. 10. Nested Cross-validation Scheme. 
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MeasureTexture. The Lasso regularization parameter λ was tuned for all three classifiers with 

nested cross-validation. 

4.5 Simple Network Classifier 

In addition to linear models, a simple neural network with one hidden layer was developed 

using the Python package Keras and with the Tensorflow backend [19,20]. The input layer used 

the image pixel matrix with dimension 82 × 82. Network hyper-parameters – neuron numbers, 

learning rate and batch size – were tuned using nested cross-validation. 

Also, we trained a simple convolutional network LeNet from scratch [13]. This network 

architecture has three sequential convolutional layers and two pooling layers. Among these 

layers, the default number of neurons provided in the original paper was used. The image pixel 

intensity matrix was used to feed this network, and the input layer was modified to support 82 × 

82 one-channel images. Similarly to the previous network model, the learning rate and batch size 

were tuned. 

4.6 Pre-trained CNN Classifier 

Using the Inception v3 deep learning network with pre-trained ImageNet weights, a transfer 

learning classifier was developed [21,22]. Instead of retraining the whole network end-to-end, 

we took advantage of the pre-trained weights and only trained the last n inception modules, 

where n was treated as a hyper-parameter. Inception modules are mini-networks that constitute 

the overall Inception v3 architecture. The popular practice of transfer learning with Inception v3 

is only retraining the last Inception module (n = 1). In our study, however, we used the nested 

cross-validation scheme to tune n along with learning rate and batch size. Images were resized 

with bilinear interpolation to fit the input layer dimension (299×299×3), and three-channel 

images were generated by merging three copies of the same grayscale image. Early stopping 

with patience 10 was used during training, which means we stop the training if the loss function 
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fails to improve in 10 consecutive epochs. This model was implemented using Keras with the 

Tensorflow backend. It was tuned on Cooley instances in Argonne National Laboratory with 

GPU support. 

4.7 Network Interpretation 

After choosing the best parameter combinations for the pre-trained CNN models, we were 

interested in interpreting the classifications. Softmax is a function that is usually used in neural 

networks to map the output real number (Logits) to a new number between 0 and 1. Studies have 

found that using the Softmax score from deep neural networks as a confidence calibration does 

not match the real accuracy [23]. Therefore, we used temperature scaling to better calibrate the 

predictions [23]. After training, for each donor, the temperature T is optimized on the validation 

set of nested Cross-validation. Then, we applied T to scale the Logits before Softmax 

computation and used the new Softmax output to infer classification confidence. 

Besides confidence calibration, we used saliency maps to further analyze what morphology 

feature is used in classification [14]. Saliency map is a straightforward and efficient way to 

detect how prediction value changes with respect to a small change in input cell image pixels. 

We generated saliency maps of the output layer for the best model for test donor 1 with few 

randomly sampled input images from donor 1. Also, saliency maps of each Inception module are 

visualized for both pre-trained Inception v3 network and our best-retrained network for a few 

randomly sampled images from donor 2. This interpretation helps us assess whether the 

classification basis is intuitive, so we can decide if we can trust the model in future applications. 

5 Reflection 

Through this independent study, my analytical skills have been significantly improved. I am 

more familiar with data processing, especially with image data. I have gained invaluable 

experience of implementing a series of classification models ranging from simple logistic 
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regressions to deep convolutional neural networks. Also, I have become comfortable with 

deploying thousands of jobs on remote GPU servers. Besides practical programming skills, I 

have a better knowledge of applying different techniques to interpret logistic regressions and 

neural networks. In addition, I have a much better appreciation of the interpretability of statistical 

learning models. Given the demand of users in practice, a simple classifier with good 

interpretability sometimes is preferred over complex "black-box" models with high accuracy. 

This tradeoff, which I first encountered in this project, directly motivates me to further study 

machine learning interpretability and human-centered AI in my PhD study. 

In addition to my refined analytical ability, I have practiced many subtle skills such as 

collaborations and communications, which are extremely helpful for my future research. I have 

learned how to explain statistical concepts such as variance-bias tradeoff and ensemble methods 

to our bioengineer collaborators. Also, I have become more comfortable with picking up 

knowledge from other fields that is essential for my interdisciplinary research. For example, 

through collaborations, I know where to find resources to help me better understand the 

motivation of immunotherapy. Moreover, I gained critical communication practice including 

scientific writing and research presentations. I have written many successful grant proposals for 

this project, which lead to the 2018 Honors Senior Thesis Summer Research Grant, as well as the 

2019 University Book Store Academic Excellence Awards. Also, we are currently working on 

writing the manuscript for this project. Besides writing, I got many opportunities to present this 

project to different audience as posters and talks through the 2018 Undergraduate Symposium, 

the 2019 Senior Honors Thesis Symposium, and the 2019 Great Lakes Bioinformatics 

Conference. Finally, I believe that my graduate study will benefit from my practice in 

collaborations and communications through this project. 
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Even though this independent study is such a fantastic experience, there are few things that I 

would do differently if I could re-do this project. First, I would start using reproducible research 

techniques from the beginning stage of this project. Professor Karl Broman’s talk on 

reproducible research really resonates with my experience. For example, I struggled in re-

generating figures for my manuscript since I had not saved either some old data or R scripts that 

were used to plot these figures. Since the beginning of this project, I should have been backing 

up and organizing all my code, data, and outputs periodically. It would save me a great amount 

of time if I want to revalidate certain methods or reproduce the outputs. To make this project 

more reproducible for other researchers, we decided to publish our code using Jupyter Notebooks 

(our working repository: https://github.com/gitter-lab/t-cell-classification). I will definitely use 

this code releasing infrastructure for my future analysis-heavy projects. However, I would start 

preparing for these notebooks earlier, so I could “advertise” them in my posters and talks and get 

feedbacks. Other than making my research more reproducible, I would get more opportunities to 

share my early stage results with the community. During the 2018 Undergraduate Symposium, I 

have recieved many helpful feedbacks from statistics professors as well as my peers. I think early 

feedbacks could keep me on the “right” research trajectory and avoid wasting time on trying 

ideas that have already been invalidated by experienced researchers. 
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